Заграничные паспорта и документы

Как корабль идет против ветра. Как парусникам удается плыть против ветра? Теперь рассмотрим работу паруса на яхте

Курсы относительно ветра. Современные яхты и парусные лодки в большинстве случаев оснащаются косыми парусами. Отличительной их особенностью является то, что основная часть паруса или весь он располагается позади мачты или штага. Благодаря тому, что передняя кромка паруса туго натянута вдоль мачты (или сама по себе), парус обтекается потоком воздуха без заполаскивания при его расположении под довольно острым углом к ветру. Благодаря этому (и при соответствующих обводах корпуса) судно приобретает способность двигаться под острым углом к направлению ветра.

На рис. 190 представлено положение парусника при различных курсах по отношению к ветру. Прямо против ветра обычный парусник идти не может - парус в этом случае не создает силы тяги, способной преодолеть сопротивление воды и воздуха. Лучшие гоночные яхты в средний ветер могут идти в бейдевинд под углом 35-40° к направлению ветра; обычно же этот угол не меньше 45°. Поэтому к цели, расположенной прямо против ветра, парусник вынужден добираться в лавировку - попеременно правым и левым галсом. Угол между курсами судна на том и другом галсе называется лавировочным углом , а положение судна носом прямо против ветра - левентиком . Способность судна лавировать и с максимальной скоростью продвигаться в направлении прямо против ветра является одним из основных качеств парусника.

Курсы от крутого бейдевинда до галфвинда, когда ветер дует под 90° к ДП судна, называются острыми ; от галфвинда до фордевинда (ветер дует прямо в корму) - полными . Различают крутой (курс относительно ветра 90-135°) и полный (135-180°) бакштаги, так же как и бейдевинд (соответственно 40-60° и 60-80° к ветру).

Рис. 190. Курсы парусного судна относительно ветра.

1 - крутой бейдевинд; 2 - полный бейдевинд; 3 - галфвинд; 4 - бакштаг; 5 - фордевинд; 6 - левентик.

Вымпельный ветер. Поток воздуха, который обтекает паруса яхты, не совпадает с направлением истинного ветра (относительно суши). Если судно имеет ход, то появляется встречный поток воздуха, скорость которого равна скорости судна. При наличии ветра его направление относительно судна за счет встречного потока воздуха отклоняется определенным образом; изменяется и величина скорости. Таким образом, на паруса попадает суммарный поток, называемый вымпельным ветром . Направление и скорость его можно получить, сложив векторы истинного ветра и встречного потока (рис. 191).

Рис. 191. Вымпельный ветер на различных курсах яхты относительно ветра.

1 - бейдевинд; 2 - галфвинд; 3 - бакштаг; 4 - фордевинд.

v - скорость движения яхты; v и - истинная скорость ветра; v в - скорость вымпельного ветра.

Очевидно, что на курсе бейдевинд скорость вымпельного ветра имеет наибольшую величину, а на фордевинде - наименьшую, так как в последнем случае скорости обоих потоков направлены в прямо противоположные стороны.

Паруса на яхте всегда устанавливают, ориентируясь по направлению вымпельного ветра. Заметим, что скорость яхты растет не в прямой пропорциональности от скорости ветра, а гораздо медленнее. Поэтому при усилении ветра угол между направлением истинного и вымпельного ветра уменьшается, а в слабый ветер скорость и направление вымпельного ветра более заметно отличается от истинного.

Поскольку силы, действующие на парус как на крыло, растут пропорционально квадрату скорости обтекающего потока, у парусников с минимальным сопротивлением движению возможно явление «саморазгона», при котором их скорость превышает скорость ветра. К таким типам парусников относятся ледовые яхты - буера, яхты на подводных крыльях, колесные (пляжные) яхты и проа - узкие однокорпусные суда с поплавком-аутригером. На некоторых из этих типов судов зафиксированы скорости, втрое превышающие скорость ветра. Так, наш национальный рекорд скорости на буере равен 140 км/ч, а установлен он при ветре, скорость которого не превышала 50 км/ч. Попутно отметим, что абсолютный рекорд скорости под парусом на воде существенно ниже: он установлен в 1981 г. на специально построенном двухмачтовом катамаране «Кроссбау-II» и равен 67,3 км/ч.

Обычные парусные суда, если они не рассчитаны на глиссирование, в редких случаях превышают предел скорости водоизмещающего плавания, равный v = 5,6 √L км/ч (см. главу I).

Силы, действующие на парусное судно. Существует принципиальное различие между системой внешних сил, действующих на парусное судно, и судно, приводимое в движение механическим двигателем. На моторном судне упор движителя - гребного винта или водомета - и сила сопротивления воды его движению действуют в подводной части, располагаясь в диаметральной плоскости и на незначительном расстоянии друг от друга по вертикали.

На паруснике движущая сила приложена высоко над поверхностью воды и, следовательно, над линией действия силы сопротивления. Если судно движется под углом к направлению ветра - в бейдевинд, то его паруса работают по принципу аэродинамического крыла, рассмотренному в главе II. При обтекании паруса потоком воздуха на его подветренной (выпуклой) стороне создается разрежение, на наветренной - повышенное давление. Сумму этих давлений можно привести к результирующей аэродинамической силе A (см. рис. 192), направленной примерно перпендикулярно хорде профиля паруса и приложенной в центре парусности (ЦП) высоко над поверхностью воды.

Рис. 192. Силы, действующие на корпус и паруса.

Согласно третьему закону механики, при установившемся движении тела по прямой каждой силе, приложенной к телу (в данном случае - к парусам, связанным с корпусом яхты через мачту, стоячий такелаж и шкоты), должна противодействовать равная ей по величине и противоположно направленная сила. На паруснике этой силой является результирующая гидродинамическая сила H , приложенная к подводной части корпуса (рис. 192). Таким образом, между силами A и H существует известное расстояние - плечо, вследствие чего образуется момент пары сил, стремящийся привести во вращение судно относительно оси, определенным образом ориентированной в пространстве.

Для упрощения явлений, возникающих при движении парусных судов, гидро- и аэродинамическую силы и их моменты раскладывают на составляющие, параллельные главным координатным осям. Руководствуясь третьим законом Ньютона, можно выписать попарно все составляющие этих сил и моментов:

A - аэродинамическая результирующая сила;
T - сила тяги парусов, движущая судно вперед:
D - кренящая сила или сила дрейфа;
A v - вертикальная (дифферентующая на нос) сила;
P - сила массы (водоизмещение) судна;
M д - дифферентующий момент;
M кр - кренящий момент;
M п - приводящий к ветру момент;
H - гидродинамическая результирующая сила;
R - сила сопротивления воды движению судна;
R д - боковая сила или сила сопротивления дрейфу;
H v - вертикальная гидродинамическая сила;
γ·V - сила плавучести;
M l - момент сопротивления дифференту;
M в - восстанавливающий момент;
M у - уваливающий момент.

Для того чтобы судно устойчиво шло по курсу, каждая пара сил и каждая пара моментов должны быть равны друг другу. Например, сила дрейфа D и сила сопротивления дрейфу R д создают кренящий момент M кр, который должен быть уравновешен восстанавливающим моментом M в или моментом поперечной остойчивости. Этот момент образуется благодаря действию сил массы P и плавучести судна γ·V , действующих на плече l . Эти же силы образуют момент сопротивления дифференту или момент продольной остойчивости M l , равный по величине и противодействующий дифферентующему моменту M д. Слагаемыми последнего являются моменты пар сил T - R и A v - H v .

Таким образом, движение парусного судна косым курсом к ветру сопряжено с креном и дифферентом, а боковая сила D , кроме крена, вызывает еще и дрейф - боковой снос, поэтому любое парусное судно движется не строго в направлении ДП, как судно с механическим двигателем, а с небольшим углом дрейфа β. Корпус парусника, его киль и руль становятся подводным крылом, на которое набегает встречный поток воды под углом атаки, равным углу дрейфа. Именно это обстоятельство обусловливает образование на киле яхты силы сопротивления дрейфу R д, которая является компонентом подъемной силы.

Устойчивость движения и центровка парусного судна. Вследствие крена сила тяги парусов T и сила сопротивления R оказываются действующими в разных вертикальных плоскостях. Они образуют пару сил, приводящих судно к ветру - сбивающих с прямолинейного курса, которым оно следует. Этому препятствуют момент второй пары сил - кренящей D и силы сопротивления дрейфу R д, а также небольшая по величине сила N на руле, которую необходимо прикладывать для того, чтобы корректировать движение яхты по курсу.

Очевидно, что реакция судна на действие всех этих сил зависит как от их величины, так и от соотношения плеч a и b , на которые они действуют. При увеличении крена плечо приводящей пары b также увеличивается, а величина плеча уваливающей пары a зависит от взаимного расположения центра парусности (ЦП - точки приложения результирующей аэродинамических сил к парусам) и центра бокового сопротивления (ЦБС - точки приложения результирующей гидродинамических сил к корпусу яхты).

Точное определение положения этих точек является довольно сложной задачей, особенно если учесть, что оно изменяется в зависимости от многих факторов: курса судна относительно ветра, покроя и настройки парусов, крена и дифферента яхты, формы и профиля киля и руля и т. п.

При проектировании и перевооружении яхт оперируют с условными ЦП и ЦБС, считая их расположенными в центрах тяжести плоских фигур, которые представляют собой паруса, поставленные в ДП, и очертания подводной части ДП с килем, плавниками и рулем (рис. 193). Центр тяжести треугольного паруса, например, находится на пересечении двух медиан, а общий центр тяжести двух парусов располагается на отрезке прямой, соединяющей ЦП обоих парусов, и делит этот отрезок обратно пропорционально их площади. Если парус имеет четырехугольную форму, то его площадь делят диагональю на два треугольника и получают ЦП как общий центр этих треугольников.

Рис. 193. Определение условного центра парусности яхты.

Положение ЦБС можно определить, уравновешивая на острие иголки шаблон подводного профиля ДП, вырезанный из тонкого картона. Когда шаблон расположится горизонтально, игла будет находиться в точке условного ЦБС. Однако этот способ более или менее применим для судов с большой площадью подводной части ДП - для яхт традиционного типа с длинной килевой линией, судовых шлюпок и т. п. На современных яхтах, обводы которых проектируются на основе теории крыла, основную роль в создании силы сопротивления дрейфу играют плавниковый киль и руль, устанавливаемый обычно отдельно от киля. Центры гидродинамических давлений на их профилях могут быть найдены достаточно точно. Например, для профилей с относительной толщиной δ/b около 8 % эта точка находится на расстоянии около 26 % хорды b от входящей кромки.

Однако корпус яхты определенным образом влияет на характер обтекания киля и руля, причем это влияние изменяется в зависимости от крена, дифферента и скорости судна. В большинстве случаев на острых курсах к ветру истинный ЦБС перемещается вперед по отношению к центру давления, определенному для киля и руля как для изолированных профилей. Вследствие неопределенности в расчете положения ЦП и ЦБС конструкторы при разработке проекта парусных судов располагают ЦП на некотором расстоянии a - опережении - впереди ЦБС. Величина опережения определяется статистически, из сравнения с хорошо зарекомендовавшими себя яхтами, которые имеют близкие к проекту обводы подводной части, остойчивость и парусное вооружение. Опережение задается обычно в процентах длины судна по ватерлинии и составляет для судна, оснащенного бермудским шлюпом, 15-18 % L . Чем меньше остойчивость яхты, тем больший крен она получит под действием ветра и тем большее необходимо опережение ЦП перед ЦБС.

Точная корректировка относительного положения ЦП и ЦБС возможна при испытаниях яхты на ходу. Если судно стремится увалиться под ветер, особенно в средний и свежий ветер, то это является большим дефектом центровки. Дело в том, что киль отклоняет стекающий с него поток воды ближе к ДП судна. Поэтому если руль стоит прямо, то его профиль работает с заметно меньшим углом атаки, чем киль. Если же для компенсации тенденции яхты к уваливанию руль приходится перекладывать на ветер, то образуемая на нем подъемная сила оказывается направленной в подветренную сторону - туда же, что и сила дрейфа D на парусах. Следовательно, судно будет иметь повышенный дрейф.

Иное дело легкая тенденция яхты приводиться. Переложенный на 3-4° в подветренную сторону руль работает с таким же или несколько большим углом атаки, что и киль, и эффективно участвует в сопротивлении дрейфу. Поперечная сила H , возникающая на руле, вызывает значительное смещение общего ЦБС к корме при одновременном уменьшении угла дрейфа. Однако, если для удержания яхты на курсе бейдевинд приходится постоянно перекладывать руль в подветренную сторону на больший чем 2-3° угол, необходимо перенести ЦП вперед или сместить назад ЦБС, что сложнее.

На построенной яхте перенести ЦП вперед можно, наклонив вперед мачту, сместив ее вперед (если позволяет конструкция степса), укоротив грот по нижней шкаторине, увеличив площадь основного стакселя. Для перемещения ЦБС назад требуется установить плавник перед рулем или же увеличить размеры пера руля.

Для устранения тенденции яхты к уваливанию необходимо применить противоположные меры: перенести ЦП назад или сместить вперед ЦБС.

Роль составляющих аэродинамической силы в создании тяги и дрейфа. Современная теория работы косого паруса основывается на положениях аэродинамики крыла, элементы которой были рассмотрены в главе II. При обтекании паруса, поставленного под углом атаки α к вымпельному ветру, потоком воздуха, на нем создается аэродинамическая сила A , которую можно представить в виде двух составляющих: подъемной силы Y , направленной перпендикулярно потоку воздуха (вымпельному ветру), и лобового сопротивления X - проекции силы A на направление потока воздуха. Эти силы используются при рассмотрении характеристик паруса и всего парусного вооружения в целом.

Одновременно силу A можно представить в виде двух других составляющих: силы тяги T , направленной по оси движения яхты, и перпендикулярной ей силы дрейфа D . Напомним, что направление движения парусника (или путь) отличается от его курса на величину угла дрейфа β, однако при дальнейшем анализе этим углом можно пренебречь.

Если на курсе бейдевинд удается увеличить подъемную силу на парусе до величины Y 1 , а лобовое сопротивление останется неизменным, то силы Y 1 и X , сложенные по правилу сложения векторов, образуют новую аэродинамическую силу A 1 (рис. 194, а ). Рассматривая ее новые составляющие T 1 и D 1 , можно заметить, что в данном случае с увеличением подъемной силы увеличиваются и сила тяги и сила дрейфа.

Рис. 194. Роль подъемной силы и лобового сопротивления в создании движущей силы.

При аналогичном построении можно убедиться, что при увеличении лобового сопротивления на курсе бейдевинд сила тяги уменьшается, а сила дрейфа увеличивается. Таким образом, при плавании в бейдевинд решающую роль в создании тяги парусов играет подъемная сила паруса; лобовое сопротивление должно быть минимальным.

Отметим, что на курсе бейдевинд вымпельный ветер имеет наивысшую скорость, поэтому обе составляющие аэродинамической силы Y и X имеют достаточно большую величину.

На курсе галфвинд (рис. 194, б ) подъемная сила является силой тяги, а лобовое сопротивление - силой дрейфа. Увеличение лобового сопротивления паруса на величине силы тяги не сказывается: увеличивается только сила дрейфа. Однако поскольку скорость вымпельного ветра на галфвинде снижается по сравнению с бейдевиндом, дрейф на ходовых качествах судна сказывается уже в меньшей степени.

На курсе бакштаг (рис. 194, в ) парус работает на больших углах атаки, при которых подъемная сила оказывается значительно меньше лобового сопротивления. Если увеличить лобовое сопротивление, то тяга и сила дрейфа также увеличатся. При возрастании подъемной силы тяга увеличивается, а сила дрейфа уменьшается (рис. 194, г ). Следовательно, на курсе бакштаг увеличение и подъемной силы и (или) лобового сопротивления повышают тягу.

При курсе фордевинд угол атаки паруса близок к 90°, поэтому подъемная сила на парусе равна нулю, а лобовое сопротивление направлено по оси движения судна и является силой тяги. Сила дрейфа равна нулю. Следовательно, на курсе фордевинд для увеличения тяги парусов желательно увеличивать их лобовое сопротивление. На гоночных яхтах это делается путем постановки дополнительных парусов - спинакера и блупера, имеющих большую площадь и плохо обтекаемую форму. Отметим, что на курсе фордевинд на паруса яхты действует вымпельный ветер минимальной скорости, что обусловливает сравнительно умеренные силы на парусах.

Сопротивление дрейфу. Как было показано выше, сила дрейфа зависит от курса яхты относительно ветра. При плавании в крутой бейдевинд она примерно втрое превышает силу тяги T , движущую судно вперед; на галфвинде обе силы примерно равны; на крутом бакштаге тяга паруса оказывается в 2-3 раза больше силы дрейфа, а на чистом фордевинде сила дрейфа отсутствует вообще. Следовательно, для того чтобы парусник успешно продвигался вперед курсами от бейдевинда до галфвинда (под углом 40-90° к ветру), оно должно обладать достаточным боковым сопротивлением дрейфу, намного превышающим сопротивление воды движению яхты по курсу.

Функцию создания силы сопротивления дрейфу на современных парусных судах выполняют в основном плавниковые кили или шверты и рули. Механика возникновения подъемной силы на крыле симметричного профиля, каковыми являются кили, шверты и рули, была рассмотрена в главе II (см. стр. 67). Отметим, что величина угла дрейфа современных яхт - угол атаки профиля киля или шверта - редко превышает 5°, поэтому, проектируя киль или шверт, необходимо выбрать его оптимальные размеры, форму и профиль сечения в расчете на получение максимальной подъемной силы при минимальном лобовом сопротивлении именно на малых углах атаки.

Испытания аэродинамических симметричных профилей показали, что более толстые профили (с большей величиной отношения толщины сечения t к его хорде b ) дают бо́льшую подъемную силу, чем тонкие. Однако на малых скоростях движения такие профили обладают более высоким лобовым сопротивлением. Оптимальные результаты на парусных яхтах можно получить при толщине киля t /b = 0,09÷0,12, так как подъемная сила на таких профилях мало зависит от скорости судна.

Максимальная толщина профиля должна располагаться на расстоянии от 30 до 40 % хорды от передней кромки профиля киля. Хорошими качествами обладает также профиль NACA 664‑0 с максимальной толщиной, расположенной на расстоянии 50 % хорды от носика (рис. 195).

Рис. 195. Профилированный киль-плавник яхты.

Ординаты рекомендуемых профилей сечений яхтенных килей и швертов
Отстояние от носика x , % b
2,5 5 10 20 30 40
Ординаты y , % b
NACA-66; δ = 0,05 2,18 2,96 3,90 4,78 5,00 4,83
2,00 2,60 3,50 4,20 4,40 4,26
- 3,40 5,23 8,72 10,74 11,85
Профиль; относительная толщина δ Отстояние от носика x , % b
50 60 70 80 90 100
Ординаты y , % b
NACA-66; δ = 0,05 4,41 3,80 3,05 2,19 1,21 0,11
Профиль для швертов; δ = 0,04 3,88 3,34 2,68 1,92 1,06 0,10
Киль яхты NACA 664-0; δ = 0,12 12,00 10,94 8,35 4,99 2,59 0

Для легких гоночных швертботов, способных выходить на режим глиссирования и развивать высокие скорости, используют шверты и рули с более тонким профилем (t /b = 0,044÷0,05) и геометрическим удлинением (отношением углубления d к средней хорде b ср) до 4.

Удлинение килей современных килевых яхт составляет от 1 до 3, рулей - до 4. Чаще всего киль имеет вид трапеции с наклонной передней кромкой, причем угол наклона оказывает определенное влияние на величину подъемной силы и лобового сопротивления киля. При удлинении киля около λ = 0,6 может быть допущен наклон передней кромки до 50°; при λ = 1 - около 20°; при λ > 1,5 оптимальным является киль с вертикальной передней кромкой.

Суммарная площадь киля и руля для эффективного противодействия дрейфу принимается обычно равной от 1 / 25 до 1 / 17 площади основных парусов.

Передвижение парусной яхты по ветру фактически определяется простым давлением ветра на ее парус, толкающим судно вперед. Однако, как показали исследования в аэродинамической трубе, путешествие под парусом против ветра подвергает парус воздействию более сложного набора сил.

Когда набегающий воздух обтекает вогнутую заднюю поверхность паруса, скорость воздуха уменьшается, в то время как при обтекании выпуклой передней поверхности паруса эта скорость растет. В результате на задней поверхности паруса образуется область повышенного давления, а на передней - пониженного. Разность давлений на двух сторонах паруса создает тянущую (толкающую) силу, которая перемещает яхту вперед под углом к ветру.

Парусная яхта, расположенная примерно под прямым углом к ветру (по морской терминологии - яхта идет галсом), быстро движется вперед. Парус подвергается воздействию тянущей и боковой сил. Если парусная яхта идет под острым углом к ветру, ее скорость замедляется из-за уменьшения тянущей силы и увеличения боковой. Чем сильнее парус повернут к корме, тем медленнее яхта движется вперед, в частности из-за большой боковой силы.

Парусная яхта не может плыть прямо против ветра, однако может продвигаться вперед, совершая серию зигзагообразных коротких перемещений под углом к ветру, называющихся галсами. Если ветер дует в левый борт (1), говорят, что яхта идет левым галсом, если в правый борт (2) - правым галсом. Для того чтобы быстрее пройти дистанцию, яхтсмен старается увеличивать до предела скорость яхты, регулируя положение ее паруса, как это показано на рисунке слева внизу. Для минимизации отклонения в сторону от прямой линии, яхта передвигается, меняя курс с правого галса на левый и наоборот. Когда яхта меняет курс, парус перебрасывается на другой борт, и при совпадении его плоскости с линией ветра какое-то время полощется, т.е. находится в бездействии (средний рисунок под текстом). Яхта попадает в так называемую мертвую зону, теряя скорость до тех пор, пока ветер снова на надует парус с противоположной стороны.

ДВИЖУЩАЯ СИЛА ВЕТРА

На сайте NASA опубликованы очень интересные материалы о разных факторах оказывающих влияние на формирование крылом самолета подъемной силы. Там же представлены интерактивные графические модели,которые демонстрируют, что подъемная сила может формироваться и симметричным крылом за счет отклонения потока.

Парус, находясь под углом к воздушному потоку, отклоняет его (рис. 1г). Идущий через «верхнюю», подветренную сторону паруса, воздушный поток проходит более длинный путь и, в соответствии с принципом неразрывности потока, движется быстрее, чем с наветренной, «нижней» стороны. Результат - давление с подветренной стороны паруса меньше, чем с наветренной стороны.

При движении курсом фордевинд, когда парус установлен перпендикулярно к направлению ветра, степень увеличения давление с наветренной стороны больше, чем степень понижения давления с подветренной стороны, другими словами ветер больше толкает яхту, чем тянет. По мере того, как яхта будет поворачивать острее к ветру, это соотношение будет меняться. Так, если ветер дует перпендикулярно курсу яхты, увеличение давления на парус с наветренной стороны оказывает меньшее влияние на скорость, чем снижение давления с подветренной стороны. Другими словами парус больше тянет яхту, чем толкает.

Движение яхты происходи благодаря тому, что ветер взаимодействует с парусом. Анализ этого взаимодействия приводит к неожиданным, для многих новичков, результатам. Оказывается, что максимальная скорость достигается, вовсе не когда ветер дует точно сзади, а пожелание «попутного ветра» несет в себе совершенно неожиданный смысл.

Как парус, так и киль, при взаимодействии с потоком, соответственно, воздуха или воды, создают подъемную силу, следовательно, для оптимизации их работы можно применить теорию крыла.

ДВИЖУЩАЯ СИЛА ВЕТРА

Воздушный поток обладает кинетической энергией и, взаимодействуя с парусами, способен двигать яхту. Работа, как паруса, так и крыла самолета, описывается законом Бернулли, согласно которому увеличение скорости потока приводит к уменьшению давления. При перемещении в воздушной среде, крыло разделяет поток. Часть его обходит крыло сверху, часть снизу. Крыло самолета спроектировано так, что воздушный поток, проходящий над верхней стороной крыла движется быстрее, чем поток, который проходит под нижней частью крыла. Результат - давление над крылом значительно ниже, чем под. Разница давления и есть подъемная сила крыла (рис. 1а). Благодаря сложной форме, крыло способно генерировать подъемную силу даже в том случае, когда рассекает поток, который движется параллельно плоскости крыла.

Парус может двигать яхту только в том случае, если находится под некоторым углом к потоку и отклоняет его. Дискуссионным остается вопрос о том, какая часть подъемной силы связана с эффектом Бернулли, а какая является результатом отклонения потока. Согласно классической теории крыла подъемная сила возникает исключительно в результате разницы скоростей потока над и под ассиметричным крылом. Вместе с тем хорошо известно, что и симметричное крыло способно создавать подъемную силу, если установлено под определенным углом к потоку (рис. 1б). В обоих случаях угол между линией соединяющей переднюю и заднюю точки крыла и направлением потока, называется углом атаки.

Подъемная сила увеличивается с увеличением угла атаки, однако эта зависимость работает только при небольших значениях этого угла. Как только угол атаки превышает некий критический уровень и происходит срыв потока, на верхней поверхности крыла образуются многочисленные вихри, а подъемная сила резко уменьшается (рис. 1в).

Яхтсмены знают, что фордевинд далеко не самый быстрый курс. Если ветер той же силы дует под углом 90 градусов к курсу, яхта движется намного быстрее. На курсе фордевинд сила, с которой ветер давит на парус, зависит от скорости яхты. С максимальной силой ветер давит на парус стоящей без движения яхты (рис. 2а). По мере увеличения скорости давление на парус падает и становится минимальный, когда яхта достигает максимальной скорости (рис. 2б). Максимальная скорость на курсе фордевинд всегда меньше скорости ветра. Причин тому, несколько: во-первых, трение, при любом движении некоторая часть энергии расходуется на преодоление различных сил препятствующих движению. Но главное то, что сила, с которой ветер давит на парус, пропорциональна квадрату скорости вымпельного ветра, а скорость вымпельного ветра на курсе фордевинд равна разнице скорости истинного ветра и скорости яхты.

Курсом галфвинд (под 90º к ветру) парусные яхты способны двигаются быстрее ветра. В рамках этой статьи мы не будем обсуждать особенности вымпельного ветра, отметим только, что на курсе галфвинд, сила, с которой ветер давит на паруса, в меньшей степени зависит от скорости яхты (рис. 2в).

Основным фактором, который препятствует увеличению скорости, является трение. Поэтому парусники с небольшим сопротивлением движению способны достигать скорости, намного превышающей скорость ветра, но не на курсе фордевинд. Например, буер, за счет того, что коньки обладают ничтожным сопротивлением скольжения, способен разогнаться до скорости 150 км/ч при скорости ветра 50 км/ч и даже меньше.

The Physics of Sailing Explained: An Introduction

ISBN 1574091700, 9781574091700

Прежде чем приступать к рассмотрению работы паруса, следует остановиться на двух коротких, но важных моментах:
1.Определить, какой именно ветер влияет на паруса.
2.Рассказать о специфической морской терминологии, связанной с курсами относительно ветра.

Истинный и вымпельный ветра в яхтинге.

Ветер, который действует на движущееся судно и всё находящееся на нем, отличается от того, который действует на какой-либо неподвижный объект.
Собственно ветер как атмосферное явление, дующий относительно земли или воды, мы называем истинным ветром.
В яхтинге ветер относительно движущейся яхты называется вымпельным и является суммой истинного ветра и встречного потока воздуха, вызванного движением судна.
Вымпельный ветер всегда дует под более острым углом к лодке, чем истинный.
Скорость вымпельного ветра может быть больше (если истинный ветер встречный или боковой), или меньше истинного (если он с попутных направлений).

Направления относительно ветра.

На ветре значит с той стороны, откуда дует ветер.
Под ветром — с той стороны, куда дует ветер.
Эти термины, а также производные от них, такие как «наветренный», «подветренный», употребляются очень широко, и не только в яхтинге.
Когда эти термины применяют к судну, принято также говорить про наветренный и подветренный борта.
Если ветер дует со стороны правого борта яхты, то этот борт называют наветренным , левый борт — подветренным соответственно.
Левый и правый галс — два термина, непосредственно связанные с предыдущими: если ветер дует в правый борт судна, то говорят, что оно идет правым галсом, если в левый –то левым.
В английской морской терминологии то, что связано с правым и левым бортом, отличается от обычных Right и Left. Про правый борт и всё, что к нему относится, говорят Starboard, про левый — Port.

Курсы относительно ветра.

Курсы относительно ветра различаются в зависимости от угла между направлением вымпельного ветра и направлением движения судна. Их можно разделить на острые и полные.

Бейдевинд — острый курс относительно ветра. когда ветер дует под углом менее 80°. Может быть крутой бейдевинд (до 50°) и полный (от 50 до 80°).
Полными курсами относительно ветра называются курсы, когда ветер дует под углом 90° и более к направлению движения яхты.
К таким курсам относятся:
Галфвинд — ветер дует под углом от 80 до 100°.
Бакштаг — ветер дует под углом от 100 до 150° (крутой бакштаг) и от 150 до 170° (полный бакштаг).
Фордевинд — ветер дует в корму под углом более 170°.
Левентик — ветер строго встречный или близок к таковому. Поскольку против такого ветра парусное судно двигаться не может, его чаще называют не курсом, а положением относительно ветра.

Маневры относительно ветра.

Когда яхта, идущая под парусами, меняет свой курс так, что угол между ветром и направлением движения уменьшается, то говорят, что судно приводится . Другими словами, привестись значит пойти под более острым углом к ветру.
Если происходит обратный процесс, т. е. яхта меняет курс в сторону увеличения угла между ним и ветром, судно уваливается .
Уточним, что термины («приводиться» и «уваливаться» используются тогда, когда лодка меняет курс относительно ветра в пределах одного и того же галса.
Если же судно меняет галс, то тогда (и только тогда!) такой маневр в яхтинге называется поворотом.
Существует два различных способа перемены галса и, соответственно, два поворота: оверштаг и фордевинд .
Поворот оверштаг — это поворот против ветра. Судно приводится, нос лодки пересекает линию ветра, в какой-то момент судно проходит через положение левентик, после чего ложится на другой галс.
Яхтинг при повороте фордевинд происходит противоположным образом: судно уваливается, корма пересекает линию ветра, паруса переносят на другой борт, яхта ложится на другой галс. Чаще всего это — поворот с одного полного курса на другой.

Работа паруса при яхтинге.

Одна из основных задач для яхтсмена при работе с парусами заключается в том, чтобы ориентировать парус под оптимальным углом относительно ветра, чтобы наилучшим образом продвигаться вперед. Для этого нужно понимать, как парус взаимодействует с ветром.
Работа паруса во многом аналогична работе крыла самолета и происходит по законам аэродинамики. Для особо любознательных яхтсменов более подробно ознакомиться с аэродинамикой паруса как крыла можно в серии статей: . Но лучше это сделать после прочтения данной статьи, постепенно переходя от легкого к более сложному материалу. Хотя, кому я это говорю? Настоящих яхтсменов трудности не пугают. И можно все сделать с точностью наоборот.

Основное отличие паруса от самолетного крыла в том, что для появления на парусе аэродинамической силы нужен некий ненулевой угол между ним и ветром, этот угол называют углом атаки. Крыло самолета имеет несимметричный профиль и может нормально работать при нулевом угле атаки, парус нет.
В процессе обтекания паруса ветром возникает аэродинамическая сила, которая в итоге и двигает яхту вперед.
Рассмотрим работу паруса в яхтинге под разными курсами относительно ветра. Сначала для простоты представим себе, что мачта с одним парусом вкопана в землю и мы можем направлять ветер под разными углами к парусу.

Угол атаки 0°. Ветер дует вдоль паруса, парус полощется, как флаг. Никакой аэродинамической силы на парусе нет, есть только сила лобового сопротивления.
Угол атаки 7°. Начинает появляться аэродинамическая сила. Она направлена перпендикулярно парусу и пока небольшая по величине.
Угол атаки около 20°. Аэродинамическая сила достигла своего максимального значения по величине, направлена перпендикулярно парусу.
Угол атаки 90°. По отношению к предыдущему случаю аэродинамическая сила существенно не изменилась ни по величине, ни по направлению.
Таким образом, мы видим, что аэродинамическая сила всегда направлена перпендикулярно парусу и величина ее практически не изменяется в диапазоне углов от 20 до 90°.
Углы атаки более 90° не имеет смысла рассматривать, поскольку паруса на яхте обычно не ставятся под такими углами относительно ветра.

Приведенные выше зависимости аэродинамической силы от угла атаки являются в большой степени упрощенными и усредненными.
На самом деле эти свойства заметно различаются в зависимости от формы паруса. Например, длинный, узкий и довольно-таки плоский грот гоночных яхт будет иметь максимум аэродинамической силы при угле атаки около 15°, на больших углах сила будет несколько меньше. Если же парус более пузатый и имеет не очень большое удлинение, то аэродинамическая сила на нем может быть максимальной при угле атаки около 25-30°.

Теперь рассмотрим работу паруса на яхте.

Для простоты представим себе, что парус на яхте один. Пусть это будет грот.
Сначала стоит посмотреть, как ведет себя система яхта+парус при движении самыми острыми курсами относительно ветра, так как это обычно вызывает больше всего вопросов.

Допустим, на яхту действует ветер под углом 30-35° к корпусу. Ориентировав парус на курсе под углом примерно 20° к ветру, мы получим на нем достаточную по величине аэродинамическую силу А.
Поскольку эта сила действует под прямым углом к парусу, мы видим, что она тянет яхту сильно в сторону. Разложив силу А на две составляющие, можно увидеть, что сила тяги вперед Т в разы меньше, чем сила, толкающая лодку вбок (D, сила дрейфа) .
За счет чего же в таком случае яхта движется вперед?
Дело в том, что конструкция подводной части корпуса такова, что сопротивление корпуса движению в сторону (так называемое боковое сопротивление) также в разы больше, чем сопротивление движению вперед. Этому способствуют киль (или шверт), руль и сама форма корпуса.
Однако боковое сопротивление возникает тогда, когда есть чему сопротивляться, т. е., чтобы оно начало работать, обязательно нужно некоторое смещение корпуса вбок, так называемый ветровой дрейф.

Это смещение естественным образом возникает под действием боковой составляющей аэродинамической силы, и как ответная реакция сразу возникает сила бокового сопротивления S, направленная в противоположную сторону. Как правило, они уравновешивают друг друга при угле дрейфа около 10-15° .
Итак, очевидно, что боковая составляющая аэродинамической силы, наиболее ярко выраженная на острых курсах относительно ветра, вызывает два нежелательных явления: ветровой дрейф и крен.

Ветровой дрейф означает, что траектория движения яхты не совпадает с ее диаметральной плоскостью (диаметральная плоскость, или ДП, — «умный» термин, обозначающий линию нос — корма). Происходит постоянное смещение яхты под ветер, движение как бы немного боком.
Известно, что при яхтинге на курсе бейдевинд при средних погодных условиях ветровой дрейф как угол между ДП и реальной траекторией движения равен примерно 10-15°.

Продвижение против ветра. Лавировка.

Поскольку яхтинг под парусами невозможен строго против ветра, а можно двигаться только под некоторым углом, хорошо бы иметь представление о том, насколько остро к ветру в градусах может двигаться яхта. И каков, соответственно, тот неходовой сектор курсов относительно ветра, в котором движение против ветра невозможно.
Опыт показывает, что обычная круизная яхта (не гоночная) может эффективно двигаться под углом 50-55° к истинному ветру.

Таким образом, если цель, которую необходимо достичь, находится строго против ветра, то яхтинг к ней будет происходить не по прямой, а зигзагом-то одним галсом, то другим. При этом на каждом галсе, естественно, нужно будет стараться идти максимально остро к ветру. Такой процесс называется лавировкой.

Угол между траекториями движения яхт на двух соседних галсах при лавировке называется лавировочным. Очевидно, что при остроте движения к ветру 50-55° лавировочный угол будет составлять 100-110°.

Величина лавировочного угла показывает нам, насколько эффективно мы можем продвигаться к цели, если она находится строго против ветра. Для угла 110°, например, путь к цели в сравнении с движением по прямой увеличивается в 1.75 раза.

Работа паруса на других курсах относительно ветра

Очевидно, что уже на курсе галфвинд сила тяги Т существенно превышает силу дрейфа D, так что дрейф и крен будут невелики.

При бакштаге как видим, по сравнению с курсом галфвинд изменилось не так уж много. Грот поставлен в положение, почти перпендикулярное ДП, и положение это для большинства яхт является предельным, развернуть его еще дальше технически невозможно.

Положение грота на курсе фордевинд ничем не отличается от положения на курсе бакштаг.
Здесь для простоты при рассмотрении физики процесса в яхтинге мы берем в расчет только один парус — грот. Обычно на яхте поставлены два паруса — грот и стаксель (передний парус). Так вот, на курсе фордевинд стаксель (если он расположен с той же стороны, что и грот) находится в ветровой тени от грота и практически не работает. Это одна из нескольких причин, по которым курс фордевинд нелюбим яхтсменами.

Трудно представить себе, как могут парусные суда идти «против ветра» – или, по выражению моряков, идти «в бейдевинд». Правда, моряк скажет вам, что прямо против ветра идти под парусами нельзя, а можно двигаться лишь под острым углом к направлению ветра. Но угол этот мал – около четверти прямого угла, – и представляется, пожалуй, одинаково непонятным: плыть ли прямо против ветра или под углом к нему в 22°.

На деле это, однако, не безразлично, и мы сейчас объясним, каким образом можно силой ветра идти навстречу ему под небольшим углом. Сначала рассмотрим, как вообще действует ветер на парус, т. е. куда он толкает парус, когда дует на него. Вы, вероятно думаете, что ветер всегда толкает парус в ту сторону, куда сам дует. Но это не так: куда бы ветер ни дул, он толкает парус перпендикулярно к плоскости паруса. В самом деле: пусть ветер дует в направлении, указанном стрелками на рисунке ниже; линия АВ обозначает парус.


Ветер толкает парус всегда под прямым углом к его плоскости.

Так как ветер напирает равномерно на всю поверхность паруса, то заменяем давление ветра силой R, приложенной к середине паруса. Эту силу разложим на две: силу Q , перпендикулярную к парусу, и силу Р, направленную вдоль него (см. рис. вверху, справа). Последняя сила никуда но толкает парус, так как трение ветра о холст незначительно. Остается сила Q , которая толкает парус под прямым углом к нему.

Зная это, мы легко поймем, как может парусное судно идти под острым углом навстречу ветру. Пусть линия КК изображает килевую линию судна.


Как можно идти на парусах против ветра.

Ветер дует под острым углом к этой линии в направлении, указанном рядом стрелок. Линия АВ изображает парус; его помещают так, чтобы плоскость его делила пополам угол между направлением киля и направлением ветра. Проследите на рисунке за разложением сил. Напор ветра на парус мы изображаем силой Q , которая, мы знаем, должна быть перпендикулярна к парусу. Силу эту разложим на две: силу R , перпендикулярную к килю, и силу S , направленную вперед, вдоль килевой линии судна. Так как движение судна в направлении R встречает сильное сопротивление воды (киль в парусных судах делается очень глубоким), то сила R почти полностью уравновешивается сопротивлением воды. Остается одна лишь сила S , которая, как видите, направлена вперед и, следовательно, подвигает судно под углом, как бы навстречу ветру. [Можно доказать, что сила S получает наибольшое значение тогда, когда плоскость паруса делит пополам угол между направлениями киля и ветра.]. Обыкновенно это движение выполняется зигзагами, как показывает рисунок ниже. На языке моряков такое движение судна называется «лавировкой» в тесном смысле слова.