Заграничные паспорта и документы

Подводные лодки Военно-морского флота России (дизель-электрические). Сколько отсеков в дизельной подводной лодке. Понятие об устройстве подводной лодки Принцип подводной лодки

Класс кораблей, способных погружаться на глубину и действовать в подводном положении, называют подводными лодками.

Надводный корабль, благодаря действию выталкивающей силы, находится на поверхности воды. Но подводная лодка кроме надводного положения должна погружаться, идти на глубине и всплывать.

Плавучесть подводной лодки

Одно из основных мореходных качеств подводной лодки – плавучесть, благодаря которому она может находиться в двух положениях: надводном и подводном.

Плавучестью в физике называют способность тела, погружённого в жидкость, оставаться в равновесии, не погружаясь и не выходя из жидкости. А под плавучестью корабля понимают его способность оставаться на плаву при заданной нагрузке.

В надводном положении плавучесть подводной лодки характеризуют запасом плавучести , то есть, процентным отношением водонепроницаемых объёмов ПЛ выше ватерлинии ко всему водонепроницаемому объёму. Чем выше её корпус выступает из воды, тем больше запас плавучести.

W = V н / V o * 100

где V н - водонепроницаемый объём ПЛ выше ватерлинии,

V o – весь водонепроницаемый объём ПЛ.

Чтобы ПЛ полностью погрузилась в воду, запас её плавучести должен стать нулевым, или нейтральным. Это означает, что по закону Архимеда её вес должен равняться весу вытесненной воды. То есть, вес лодки нужно увеличить. Но как это сделать? Очень просто - принять на борт дополнительный груз. Подводники называют его балластом. Им становится забортная вода, которой заполняют балластные цистерны на борту ПЛ.

Но объём балласта должен быть рассчитан очень точно. Ведь если вес принятого груза окажется больше веса полностью погруженной лодки, она не будет плавать в подводном положении, а продолжит погружаться, пока не достигнет грунта, или не разрушится её прочный корпус.

После полного погружения лодка меняет глубину с помощью рулей.

Для всплытия балласт продувается, то есть, вода выдувается из балластных цистерн сжатым воздухом, запасы которого всегда есть на борту. Вес лодки становится меньше. Она приобретает положительную плавучесть и всплывает.

На практике и вес подводной лодки, и плотность воды не остаются постоянными. А любая, даже самая незначительная разница между весом подводной лодки и выталкивающей силой заставляла бы её подниматься на поверхность или опускаться на дно. Для устранения такой ситуации служат горизонтальные рули. Они управляют движением подводной лодки в вертикальной плоскости.

Как устроена подводная лодка

Подводная лодка погружается на большие глубины, где давление воды огромное. Поэтому её корпус должен быть очень прочным.

Современная подводная лодка имеет 2 корпуса: водопроницаемый лёгкий корпус и водонепроницаемый прочный корпус.

Лёгкий корпус предназначен для придания лодке совершенных гидродинамических форм. В подводном положении внутри него находится вода, поэтому ему и не нужно быть прочным.

А прочный корпус, находящийся внутри лёгкого, способен выдержать огромное давление воды на большой глубине. От того, насколько он прочный, зависит глубина погружения лодки. Внутри прочный корпус разделён переборками на отсеки . Это сделано из соображений безопасности. При возникновении нештатной ситуации: пробоины или пожара, отсек герметизируется. Это повышает живучесть корабля.

На ПЛ имеются различные цистерны. В них хранятся запасы питьевой воды, топлива, сжатого воздуха и т.д.

Цистерны, которые заполняются забортной водой, и служат для изменения плавучести, называются цистернами главного балласта (ЦГБ). Они разбиты на 3 группы: носовую, кормовую и среднюю. Они могут заполняться и продуваться одновременно или независимо друг от друга. Их объём постоянен. Однако на практике действительный запас плавучести и расчётный могут отличаться. В теории это называется остаточная плавучесть подводной лодки . Для устранения разницы между объёмом цистерн главного балласта и объёмом воды, которую нужно принять для полного погружения, используют цистерны вспомогательного балласта . Остаточную плавучесть погашают, принимая или откачивая воду в уравнительную цистерну .

Для срочного погружения используют цистерну быстрого погружения . В неё принимают балласт, и лодка быстро погружается. После этого цистерна быстрого погружения немедленно продувается сжатым воздухом для удаления балласта.

После выхода торпед или ракет в торпедные аппараты или ракетные шахты поступает вода. Её сливают в специальные торпедо- и ракетозаместительные цистерны , чтобы сохранить общую нагрузку.

Движение в надводном положении дизель-электрической подводной лодки обеспечивает дизель , который является и двигателем, и приводом генератора. Генератор вырабатывает электрическую энергию. Его энергию запасает аккумуляторная батарея . В подводном положении она её выдаёт.

Источник энергии на атомной подводной лодке – ядерный реактор .

Другим источником энергии на ПЛ служит сжатый воздух . С его помощью заполняются и продуваются цистерны, выстреливаются торпеды. Он служит источником кислорода. При аварийном затоплении отсеков их продувают сжатым воздухом.

Подводный аппарат батискаф

Увеличение веса ПЛ происходит вытеснением воды сжатым воздухом. Но на большой глубине воздух перестаёт быть «сжатым». Он уже не может вытеснить воду из балластных цистерн. А в подводном аппарате батискафе в качестве балласта применяется тяжёлый груз, который позволяет погружаться, и сбрасывается, когда нужно всплывать.

Как и ПЛ, батискаф имеет 2 корпуса – лёгкий и прочный . Лёгкий называют поплавком . В его отсеках находится вещество легче воды. В первых батискафах использовали бензин. Позднее стали применять композитный материал.

Экипаж, приборы и другие системы размещаются в прочном корпусе, который называется гондолой .

Батискафы могут погружаться на гораздо большую глубину, чем лодки. Они способны достичь предельных океанских глубин.

Подводные лодки - особый класс боевых кораблей, которые кроме всех качеств военных кораблей обладают способностью плавать под водой, маневрируя по курсу и глубине. По конструктивному исполнению (рис. 1.20) подводные лодки бывают:

О д н о к о р п у с н ы е, имеющие один прочный корпус, который заканчивается в носу и корме хорошо обтекаемыми оконечностями легкой конструкции;
- п о л у т о р а к о р п у с н ы е, имеющие кроме прочного корпуса еще и легкий, но не по всему обводу прочного корпуса;
- д в у к о р п у с н ы е, имеющие два корпуса - прочный и легкий, причем последний полностью облегает по периметру прочный и простирается на всю длину лодки. В настоящее время большинство подводных лодок являются двукорпусными.

Рис. 1.20. Конструктивные типы подводных лодок:
а - однокорпусная; б - полуторакорпусная; в - двукорпусная; 1 - прочный корпус; 2 - боевая рубка; 3 - надстройка; 4 - киль; 5 - легкий корпус


Прочный корпус - основной конструктивный элемент подводной лодки, обеспечивающий безопасное нахождение ее на предельной глубине. Он образует замкнутый объем, непроницаемый для воды. Пространство внутри прочного корпуса (рис. 1.21) разделяется поперечными водонепроницаемыми переборками на отсеки, которые называются в зависимости от характера вооружения и оборудования, располагающихся в них.


Рис. 1.21. продольный разрез дизель-аккумуляторной подводной лодки:
1 - прочный корпус; 2 - носовые торпедные аппарты; 3 - легкий корпус; носовой торпедный отсек; 5 - торпеднопогрузочный люк; 6 - надстройка; 7 - прочная боевая рубка; 8 - ограждение рубки; 9 - выдвижные устройства; 10 - входной люк; 11 - кормовые торпедные аппараты; 12 - кормовая оконечность; 13 - перо руля; 14 - кормовая дифферентная цистерна; 15 - концевая (кормовая) водонепроницаемая переборка; 16 - кормовой торпедный отсек; 17 - внутренняя водонепроницаемая переборка; 18 - отсек главных гребных электродвигателей и электростанция; 19 - балластная цистерна; 20 - машинный отсек; 21 - топливная цистерна; 22 , 26 - кормовая и носовая группы аккумуляторных батарей; 23, 27 - жилые помещения команды; 24 - центральный пост; 25 - трюм центрального поста; 28 - носовая дифферентная цистерна; 29 - концевая (носовая) водонепроницаемая переборка; 30 - носовая оконечность; 31 - цистерна плавучести.


Внутри прочного корпуса размещаются помещения для личного состава, главные и вспомогательные механизмы, оружие, различные системы и устройства, носовая и кормовая группы аккумуляторных батарей, различные запасы и т. п. На современных подводных лодках вес прочного корпуса в общем весе корабля составляет 16-25%; в весе только корпусных конструкций - 50-65%.

Конструктивно прочный корпус состоит из шпангоутов и обшивки. Ш п а н г о у т ы имеют, как правило, кольцевую, а в оконечностях эллиптическую форму и изготовляются из профильной стали. Устанавливаются они один от другого на расстоянии 300-700 мм в зависимости от конструкции лодки как с внутренней, .так и с наружной стороны обшивки корпуса, а иногда и комбинированно с той и другой стороны вплотную.

О б ш и в к а прочного корпуса изготовляется из специальной прокатной листовой стали и приваривается к шпангоутам. Толщина листов обшивки доходит до 35 мм в зависимости от диаметра прочного корпуса и предельной глубины погружения подводной лодки.

П е р е б о р к и прочного корпуса бывают прочные и легкие. Прочные переборки делят внутренний объем современных подводных лодок на 6-10 водонепроницаемых отсеков и обеспечивают подводную непотопляемость корабля. По расположению они бывают внутренними и концевыми; по форме - плоскими и сферическими.

Легкие переборки предназначены для обеспечения надводной непотопляемости корабля. Конструктивно переборки выполняются из набора и обшивки. Набор переборки обычно состоит из нескольких вертикальных и поперечных стоек (балок). Обшивка изготовляется из листовой стали.

Концевые водонепроницаемые переборки обычно равнопрочны с прочным корпусом и замыкают его в носовой и кормовой частях. Эти переборки служат на большинстве подводных лодок жесткими опорами для торпедных аппаратов.

Отсеки сообщаются через водонепроницаемые двери, имеющие круглую или прямоугольную форму. Эти двери снабжены быстродействующими запирающими устройствами.

В вертикальном направлении отсеки разделяются платформами на верхнюю и нижнюю части, а иногда помещения лодки имеют многоярусное расположение, что увеличивает полезную площадь платформ, приходящуюся на единицу объема. Расстояние между платформами «в свету» делается более 2 м, т. е. несколько большим, чем средний рост человека.

В верхней части прочного корпуса устанавливается прочная (боевая) рубка, сообщающаяся через рубочный люк с центральным постом, под которым расположен трюм. На большинстве современных подводных лодок прочная рубка выполняется в виде круглого цилиндра небольшой высоты. Снаружи прочная рубка и устройства, расположенные за ней, для улучшения обтекания при движении в подводном положении закрываются легкими конструкциями, которые называются ограждением рубки. Обшивка рубки изготовляется из листовой стали той же марки, что и прочный корпус. Торпедо- погрузочный и входные люки располагаются также вверху прочного корпуса.

Ц и с т е р н ы предназначены для погружения, всплытия, удифферентования лодки, а также для хранения жидких грузов. В зависимости от назначения бывают цистерны: главного балласта, вспомогательного балласта, корабельных запасов и специальные. Конструктивно они выполняются либо прочными, т. е. рассчитанными на предельную глубину погружения, либо легкими, способными выдерживать давление 1-3 кг/см2. Они располагаются внутри прочного корпуса, между прочным и легким корпусом и в оконечностях.

К и л ь - сварная или клепаная балка коробчатого, трапециевидного, Т-образного, а иногда и полуцилиндрического сечения, привариваемая к днищевой части корпуса лодки. Он предназначен для усиления продольной прочности, предохранения корпуса от повреждения при покладке на каменистый грунт и постановке на клетку дока.

Легкий корпус (рис. 1.22) - жесткий каркас, состоящий из шпангоутов, стрингеров, поперечных непроницаемых переборок и обшивки. Он придает подводной лодке хорошо обтекаемую форму. Легкий корпус состоит из наружного корпуса, носовой и кормовой оконечностей, палубной надстройки, ограждения рубки. Форму легкого корпуса полностью определяют наружные обводы корабля.


Рис. 1.22. Поперечный разрез полуторакорпусной подводной лодки:
1 - ходовой мостик; 2 - боевая рубка; 3 - надстройка; 4 - стрингер; 5 - уравнительная цистерна; 6 - подкрепляющая стойка; 7, 9 - кницы; 8- платформа; 10 - коробчатый киль; 11 - фундамент главных дизелей; 12 - обшивка прочного корпуса; 13 - шпангоуты прочного корпуса; 14 - цистерна главного балласта; 15 - раскосные стойки; 16 - крышка цистерны; 17 - обшивка легкого корпуса; 18 - шпангоут легкого корпуса; 19 - верхняя палуба


Наружным корпусом называется водонепроницаемая часть легкого корпуса, расположенная вдоль прочного корпуса. Он закрывает прочный корпус по периметру поперечного сечения лодки от киля до верхнего водонепроницаемого стрингера и простирается по длине корабля от носовой до кормовой концевых переборок прочного корпуса. Ледовый пояс легкого корпуса располагается в районе крейсерской ватерлинии и простирается от носовой оконечности до миделя; ширина пояса около 1 ж, толщина листов - 8 мм.

Оконечности легкого корпуса служат для придания обтекаемости обводам носа и кормы подводной лодки и простираются от концевых переборок прочного корпуса до форштевня и ахтерштевня соответственно.

В носовой оконечности размещаются: носовые торпедные аппараты, цистерны главного балласта и плавучести, цепной ящик, якорное устройство, гидроакустические приемники и излучатели. Конструктивно она состоит из обшивки и сложной системы набора. Выполняется из листовой стали того же качества, что и наружный корпус.

Форштевень - кованая или сварная балка, обеспечивает жесткость носовой кромки корпуса лодки.

В кормовой оконечности (рис. 1.23) размещаются: кормовые торпедные аппараты, цистерны главного балласта, горизонтальные и вертикальные рули, стабилизаторы, гребные валы с мортирами.


Рис. 1.23. Схема кормовых выступающих устройств:
1 - вертикальный стабилизатор; 2 - вертикальный руль; 3 - гребной винт; 4 - горизонтальный руль; 5 - горизонтальный стабилизатор


Ахтерштевень - балка сложного сечения, обычно сварная; обеспечивает жесткость кормовой кромки корпуса подводной лодки.

Горизонтальные и вертикальные стабилизаторы придают при движении устойчивость подводной лодке. Через горизонтальные стабилизаторы (при двухвальной энергетической установке) проходят гребные валы, на концах которых устанавливаются гребные винты. За гребными винтами в одной плоскости со стабилизаторами устанавливаются кормовые горизонтальные рули.

Конструктивно кормовая оконечность состоит из набора и обшивки. Набор выполняется из стрингеров, рамных и простых шпангоутов, платформ и переборок. Обшивка равнопрочна с наружным корпусом.

Надстройка (рис. 1.24) располагается выше верхнего водонепроницаемого стрингера наружного корпуса и простирается по всей длине прочного корпуса, переходя за его пределами в оконечности. Конструктивно надстройка состоит из обшивки и набора. В надстройке располагаются: различные системы, устройства, носовые горизонтальные рули и др.


Рис. 1.24. Надстройка подводной лодки:
1 - кницы; 2 - отверстия в палубе; 3 - палуба надстройки; 4 - борт надстройки; 5 - шпигаты; 6- пиллерс; 7 - крышка цистерны; 8 - обшивка прочного корпуса; 9 - шпангоут прочного корпуса; 10 - обшивка легкого корпуса; 11 - водонепроницаемый стрингер наружного корпуса; 12 - шпангоут легкого корпуса; 13 - шпангоут надстройки


Выдвижные устройства (рис. 1.25). Современная подводная лодка имеет большое число различных устройств и систем, которые обеспечивают управление ее маневрами, использование оружия, живучесть, нормальную работу энергетической установки и других технических средств в различных условиях плавания.


Рис. 1.25. Выдвижные устройства и системы подводной лодки:
1 - перископ; 2 - радиоантенны (выдвижные); 3 - радиолокационные антенны; 4 - воздушная шахта для работы дизеля под водой (РДП); 5 - выхлопное устройство РДП; 6 - радиоантенна (заваливающаяся)


К таким устройствам и системам, в частности, относятся: радиоантенны (заваливающиеся и выдвижные), выхлопное устройство для работы дизеля под водой (РДП), воздушная шахта РДП, радиолокационные антенны, перископы и др.

Вперед
Оглавление
Назад

Принципы и устройство подводной лодки

Принципы действия и устройство подводной лодки рассматриваются вместе, так как они тесно связаны. Определяющим является принцип подводного плавания. Отсюда, основные требования к ПЛ это:

  • выдерживать давление воды в подводном положении, то есть обеспечивать прочность и водонепроницаемость корпуса.
  • обеспечивать управляемые погружение, всплытие, и смену глубины.
  • иметь оптимальное с точки зрения ходкости обтекание
  • сохранять работоспособность (боеспособность) во всём диапазоне эксплуатации по физическим, климатическим условиям и условиям автономности.

Устройство одной из первых субмарин, «Пионер», 1862

Схема устройства подводной лодки

Прочность и водонепроницаемость

Обеспечение прочности является самой трудной задачей, и потому главное внимание уделяется ей. В случае двухкорпусной конструкции давление воды (избыточные 1 кгс/см² на каждые 10 м глубины) принимает на себя прочный корпус , имеющий оптимальную форму для противостояния давлению. Обтекание обеспечивается лёгким корпусом . В ряде случаев при однокорпусной конструкции прочный корпус имеет форму одновременно удовлетворяющую и условиям противостояния давлению, и условиям обтекаемости. Например, такую форму имел корпус подводной лодки Джевецкого , или британской сверхмалой субмарины X-Craft .

Прочный корпус (ПК)

От того, насколько прочен корпус, какое давление воды он может выдерживать, зависит важнейшая тактическая характеристика ПЛ - глубина погружения. Глубина определяет скрытность и неуязвимость лодки, чем больше глубина погружения, тем сложнее обнаружить лодку и тем сложнее поразить её. Наиболее важны рабочая глубина - максимальная глубина, на которой лодка может находиться неограниченно долго без возникновения остаточных деформаций, и предельная глубина - максимальная глубина, на которую лодка еще может погружаться без разрушения, пусть и с остаточными деформациями.

Разумеется, прочность должна сопровождаться водонепроницаемостью. Иначе лодка, как и всякий корабль, просто не сможет плавать.

Перед выходом в море или перед походом, в ходе пробного погружения, на ПЛ проверяется прочность и герметичность прочного корпуса. Непосредственно перед погружением из лодки с помощью компрессора (на дизельных ПЛ - главного дизеля) частью откачивается воздух, чтобы создать разрежение. Подается команда «слушать в отсеках». Одновременно следят за отсечным давлением. Если слышен характерный свист воздуха, и/или давление быстро восстанавливается до атмосферного, прочный корпус негерметичен. После погружения в позиционное положение подается команда «осмотреться в отсеках», и корпус и арматура визуально проверяются на течи.

Лёгкий корпус (ЛК)

Обводы легкого корпуса обеспечивают оптимальное обтекание на расчетном ходу. В подводном положении внутри легкого корпуса находится вода, - внутри и снаружи него давление одинаково и ему нет надобности быть прочным, отсюда его название. В легком корпусе располагают оборудование, не требующее изоляции от забортного давления: балластные и топливные (на дизельных ПЛ) цистерны, антенны ГАС , тяги рулевого устройства.

Типы конструкции корпуса

  • Однокорпусные: цистерны главного балласта (ЦГБ) находятся внутри прочного корпуса. Легкий корпус только в оконечностях. Элементы набора, подобно надводному кораблю, находятся внутри прочного корпуса.
    Достоинства такой конструкции: экономия размеров и веса, соответственно меньшие потребные мощности главных механизмов, лучшая подводная маневренность.
    Недостатки: уязвимость прочного корпуса, малый запас плавучести, необходимость выполнять ЦГБ прочными.
    Исторически, первые ПЛ были однокорпусными. Большинство американских АПЛ также однокорпусные.
  • Двухкорпусные: (ЦГБ внутри легкого корпуса, легкий корпус полностью закрывает прочный). У двухкорпусных ПЛ элементы набора обычно находятся снаружи прочного корпуса, чтобы сэкономить место внутри.
    Достоинства: повышенный запас плавучести, более живучая конструкция.
    Недостатки: увеличение размеров и веса, усложнение балластных систем, меньшая маневренность, в том числе при погружении и всплытии.
    По такой схеме построено большинство русских/советских лодок. Для них стандартное требование - обеспечение непотопляемости при затоплении любого отсека и прилегающих к нему ЦГБ.
  • Полуторакорпусные: (ЦГБ внутри легкого корпуса, легкий корпус частично закрывает прочный).
    Достоинства полуторакорпусных ПЛ: хорошая маневренность, сокращенное время погружения при достаточно высокой живучести.
    Недостатки: меньший запас плавучести, необходимость помещать больше систем в прочный корпус.
    Такой конструкцией отличались средние ПЛ времен Второй мировой войны , например немецкие типа VII , и первые послевоенные, например тип «Гуппи», США.

Надстройка

Надстройка формирует дополнительный объем над ЦГБ и/или верхнюю палубу ПЛ, для использования в надводном положении. Выполняется лёгкой, в подводном положении заполняется водой. Может играть роль дополнительной камеры над ЦГБ, страхующей цистерны от аварийного заполнения. В ней же располагают устройства, не требующие водонепроницаемости: швартовное, якорное, аварийные буи. В верхней части цистерн находятся клапана вентиляции (КВ), под ними - аварийные захлопки (АЗ). Иначе их называют первыми и вторыми запорами ЦГБ.

Прочная рубка (вид через нижний рубочный люк)

Прочная рубка

Устанавливается на прочном корпусе сверху. Выполняется водонепроницаемой. Является шлюзом для доступа в ПЛ через главный люк, спасательной камерой, а часто и боевым постом. Имеет верхний и нижний рубочный люк . Через нее же обычно пропущены шахты перископов . Прочная рубка обеспечивает дополнительную непотопляемость в надводном положении - верхний рубочный люк высоко над ватерлинией , опасность заливания ПЛ волной меньше, повреждение прочной рубки не нарушает герметичности прочного корпуса. При действии под перископом рубка позволяет увеличить его вылет - высоту головки над корпусом, - и тем самым увеличить перископную глубину. Тактически это выгоднее - срочное погружение из-под перископа происходит быстрее.

Ограждение рубки

Реже - ограждение выдвижных устройств. Устанавливается вокруг прочной рубки, чтобы улучшить обтекание ее и выдвижных устройств. Оно же формирует ходовой мостик. Выполняется легким.

Погружение и всплытие

Когда требуется срочное погружение, используют цистерну быстрого погружения (ЦБП, иногда называется цистерной срочного погружения). Ее объем не входит в расчетный запас плавучести, то есть приняв в нее балласт, лодка становится тяжелее окружающей воды, что помогает «провалиться» на глубину. После этого, разумеется, цистерна быстрого погружения немедленно продувается. Она находится в прочном корпусе и выполняется прочной.

В боевой обстановке (в том числе на боевой службе и в походе) немедленно после всплытия лодка принимает воду в ЦБП, и компенсирует ее вес, поддувая главный балласт - сохраняя некоторое избыточное давление в ЦГБ. Таким образом, лодка находится в немедленной готовности к срочному погружению.

Среди важнейших специальных цистерн :

Торпедо- и ракетозаместительные цистерны.

Чтобы сохранить общую нагрузку после выхода торпед или ракет из ТА / шахт, и предотвратить самопроизвольное всплытие, поступившую в них воду (около тонны на каждую торпеду, десятки тонн на ракету) не откачивают за борт, а сливают в специально предназначенные цистерны. Это позволяет не нарушать работы с ЦГБ и ограничить объем уравнительной цистерны.

Если попытаться компенсировать вес торпед и ракет за счет главного балласта, тот должен быть переменным, то есть в ЦГБ должен оставаться пузырь воздуха, а он «гуляет» (подвижен) - наихудшая для дифферентовки ситуация. Погруженная ПЛ при этом практически теряет управляемость , по выражению одного автора, «ведет себя как взбесившаяся лошадь». В меньшей степени это справедливо и для уравнительной цистерны. Но главное, если ею компенсировать большие грузы, придется увеличить ее объем, а значит, количество сжатого воздуха, необходимого для продувания. А запас сжатого воздуха на лодке - самое ценное, его всегда мало и он трудно восполним.

Цистерны кольцевого зазора

Между торпедой (ракетой) и стенкой торпедного аппарата (шахты) всегда имеется зазор, особенно в головной и хвостовой частях. Перед выстрелом наружную крышку торпедного аппарата (шахты) нужно открыть. Сделать это можно, только сравняв давление за бортом и внутри, то есть заполнив ТА (шахту) водой, сообщающейся с забортной. Но если впустить воду непосредственно из-за борта, дифферентовка будет сбита - прямо перед выстрелом.

Чтобы этого избежать, воду, необходимую для заполнения зазора, хранят в специальных цистернах кольцевого зазора (ЦКЗ). Они находятся вблизи ТА или шахт, и заполняются из уравнительной цистерны. После этого для выравнивания давления достаточно перепустить воду из ЦКЗ в ТА, и открыть забортный клапан.

Энергетика и живучесть

Понятно, что ни заполнение и продувка цистерн, ни выстрел торпед или ракет, ни движение или даже вентиляция не происходят сами собой. Подводная лодка - не квартира, где можно открыть форточку, и свежий воздух сам заменит использованный. На все это нужны затраты энергии.

Соответственно, без энергии лодка не может не только двигаться, но сколько-нибудь долго сохранять способность «плавать и стрелять». То есть, энергетика и живучесть - две стороны одного процесса.

Если с движением можно подобрать традиционные для корабля решения - использовать энергию сжигаемого топлива (если для этого достаточно кислорода), или энергию расщепления атома, то для действий, свойственных только подводной лодке, нужны другие источники энергии. Даже ядерный реактор, дающий практически неограниченный ее источник, имеет недостаток - он вырабатывает её только в определённом темпе, и очень неохотно темп меняет. Попытаться получить с него больше мощности значит рисковать, что реакция выйдет из-под контроля - этакий ядерный мини-взрыв.

Значит, нужен какой-то способ запасать энергию, и быстро высвобождать по мере надобности. И сжатый воздух с зарождения подводного плавания остаётся самым лучшим способом. Единственный серьёзный недостаток его в ограниченности запасов. Баллоны для хранения воздуха имеют немалый вес, и тем больше, чем больше давление в них. Это и ставит предел запасам.

Воздушная система

Основная статья: Воздушная система

Сжатый воздух является вторым по значению источником энергии на лодке и, во вторую очередь, даёт запас кислорода. С его помощью производится множество эволюций - от погружения и всплытия до удаления из лодки отходов.

Например, бороться с аварийным затоплением отсеков можно подачей в них сжатого воздуха. Торпеды и ракеты выстреливаются тоже воздухом - по сути, продуванием ТА или шахт.

Воздушная система подразделяется на систему воздуха высокого давления (ВВД), воздуха среднего давления (ВСД) и воздуха низкого давления (ВНД).

Система ВВД является среди них главной. Хранить сжатый воздух выгоднее под высоким давлением - занимает меньше места и аккумулирует больше энергии. Поэтому его хранят в баллонах ВВД, а в другие подсистемы отпускают через редукторы давления.

Пополнение запасов ВВД - долгая и энергоёмкая операция. И конечно, она требует доступа к атмосферному воздуху. Учитывая, что современные лодки большую часть времени проводят под водой, и на перископной глубине стараются тоже не задерживаться, возможностей для пополнения не так много. Сжатый воздух приходится буквально рационировать, и обычно следит за этим лично старший механик (командир БЧ-5).

Движение

Движение, или ход ПЛ - главный потребитель энергии. В зависимости от того, как обеспечивается надводный и подводный ход, все ПЛ можно разделить на два больших типа: с раздельным или с единым двигателем .

Раздельным называется двигатель, который используется только для надводного или только для подводного хода. Единым , соответственно, называется двигатель, который годится для обоих режимов.

Исторически первым двигателем ПЛ был человек. Своей мускульной силой он приводил лодку в движение как на поверхности, так и под водой. То есть, был единым двигателем.

Поиск более мощных и дальноходных двигателей был прямо связан с развитием техники вообще. Он прошёл через паровую машину и различные типы двигателей внутреннего сгорания к дизелю . Но все они имеют общий недостаток - зависимость от атмосферного воздуха. Неизбежно возникает раздельность , то есть нужда во втором двигателе, для подводного хода. Дополнительное требование к двигателям подводных лодок - низкий уровень производимого шума. Бесшумность подлодки в режиме подкрадывания необходима для сохранения её незаметности от противника при выполнении боевых задач в непосредственной близости от него.

Традиционно двигателем подводного хода был и остаётся электромотор , питающийся от аккумуляторной батареи. Он воздухонезависим, достаточно безопасен и приемлем по весу и габаритам. Однако и тут есть серьёзный недостаток - малая ёмкость батареи. Поэтому запас непрерывного подводного хода ограничен. Мало того, он зависит от режима использования. Типичной дизель-электрической ПЛ требуется подзаряжать батарею после каждых 300÷350 миль экономического хода, или каждых 20÷30 миль полного хода. Иными словами, лодка может пройти без подзарядки 3 и более суток со скоростью в 2÷4 узла, или час-полтора со скоростью более 20 узлов. Поскольку вес и объём дизельной ПЛ ограничены, дизель и электромотор выступают в нескольких ролях. Дизель может быть двигателем, или поршневым компрессором , если его вращает электромотор. Тот, в свою очередь, может быть генератором , когда его вращает дизель, или двигателем, когда работает на винт.

Были попытки создать единый парогазовый двигатель. Немецкие ПЛ Вальтера использовали в качестве топлива концентрированную перекись водорода . Она оказалась слишком взрывоопасной, дорогой и нестабильной для широкого применения.

Только с созданием пригодного для ПЛ ядерного реактора появился поистине единый двигатель, дающий ход в любом положении неограниченно долго. Поэтому возникло деление подводных лодок на атомные и неатомные .

Существуют ПЛ с неатомным единым двигателем. Например, шведские лодки типа «Наккен» с двигателем Стирлинга . Однако они лишь удлинили время подводного хода, не избавив лодку от необходимости всплывать для пополнения запасов кислорода. Широкого применения этот двигатель пока не нашёл.

Электро-энергетическая Система (ЭЭС)

Основными элементами системы являются генераторы , преобразователи , хранилища, проводники и потребители энергии.

Поскольку большинство ПЛ в мире - дизель-электрические, они имеют характерные особенности в схеме и составе ЭЭС. В классической системе дизель-электрической ПЛ электромотор используется как обратимая машина, то есть может потреблять ток для движения, или вырабатывать его для зарядки. В такой системе имеются:

Главный дизель . Является двигателем надводного хода и приводом генератора. Также играет второстепенную роль как поршневой компрессор . Главный распределительный щит (ГРЩ). Преобразует ток генератора в постоянный ток зарядки АБ или наоборот, и раздаёт энергию потребителям. Гребной электродвигатель (ГЭД). Основным его назначением является работа на винт. Может также играть роль генератора . Аккумуляторная батарея (АБ). Запасает и хранит электроэнергию от генератора, выдаёт её для расходования когда генератор не работает - прежде всего под водой. Электроарматура . Кабеля , прерыватели, изоляторы . Их назначение - связь остальных элементов системы, передача энергии потребителям и предотвращение её утечек.

Для такой ПЛ характерными режимами являются:

  1. Винт-зарядка . Дизель одного борта вращает гребной винт, дизель другого работает на генератор, заряжая АБ.
  2. Винт-расход . Дизель одного борта вращает гребной винт, дизель другого работает на генератор, который снабжает потребителей.
  3. Частичное электродвижение . Дизеля работают на генератор, часть энергии которого потребляется электродвигателем, другая часть идёт на зарядку АБ.
  4. Полное электродвижение . Дизеля работают на генератор, вся энергия которого потребляется электродвигателем.

В некоторых случаях в системе имеются ещё отдельные дизель-генераторы (ДГ) и электродвигатель экономического хода (ЭДЭХ). Последний используется для малошумного экономичного режима «подкрадывания» к цели.

Основной проблемой хранения и передачи электроэнергии является сопротивление элементов ЭЭС. В отличие от наземных агрегатов, сопротивление в условиях высокой влажности и насыщенности оборудованием ПЛ - величина сильно переменная. Одной из постоянных задач команды электриков является контроль изоляции и восстановление её сопротивления до штатного.

Второй серьёзной проблемой является состояние аккумуляторных батарей. В результате химической реакции в них генерируется тепло и выделяется водород . Если свободный водород накопится в определённой концентрации, он образует с кислородом воздуха гремучую смесь, способную взрываться не хуже глубинной бомбы. Перегретая же батарея в тесном трюме служит причиной весьма характерного для лодок ЧП - пожара в аккумуляторной яме.

При попадании в батарею морской воды выделяется хлор , образующий крайне ядовитые и взрывоопасные соединения. Смесь водорода с хлором взрывается даже от света. Учитывая, что вероятность попадания забортной воды в помещения лодки всегда высока, требуется постоянный контроль за содержанием хлора и вентилирование аккумуляторных ям.

В подводном положении для связывания водорода используются приборы беспламенного (каталитического) дожигания водорода - КПЧ, устанавливаемые в отсеках подводной лодки и печи дожига водорода, встроенные в систему вентиляции аккумуляторной батареи. Полное удаление водорода возможно только вентилированием АБ. Поэтому на ходовой лодке даже в базе несётся вахта в центральном посту и в посту энергетики и живучести (ПЭЖ). Одна из её задач - контроль содержания водорода и вентилирование аккумуляторной батареи.

Топливная система

На дизель-электрических, и в меньшей степени, на атомных ПЛ используется дизельное топливо - соляр. Объём хранимого топлива может составлять до 30 % водоизмещения. Причём это переменный запас, а значит он представляет серьёзную задачу при расчёте дифферентовки.

Соляр достаточно легко отделяется от морской воды отстаиванием, при этом практически не смешивается, поэтому применяют такую схему. Топливные цистерны располагаются в нижней части лёгкого корпуса. По мере расходования топлива оно замещается забортной водой. Поскольку разница плотностей соляра и воды примерно 0,8 к 1.0, соблюдается порядок расходования, например: носовая цистерна левого борта, затем кормовая правого, затем носовая цистерна правого, и так далее, чтобы изменения в дифферентовке были минимальны.

Водоотливная система

Как следует из названия, предназначена для удаления воды из ПЛ. Состоит из насосов (помп), трубопроводов и арматуры. Имеет водоотливные помпы для быстрой откачки больших количеств воды, и осушительные для полного её удаления.

Основу её составляют центробежные помпы, с большой производительностью. Поскольку их подача зависит от противодавления, и значит, падает с глубиной, то имеются и помпы, подача которых от противодавления не зависит - поршневые. Например, на ПЛ пр.633 производительность водоотливных средств на поверхности составляет 250 м³/ч, на рабочей глубине 60 м³/ч.

Противопожарная система

Противопожарная система ПЛ состоит из подсистем четырёх видов. По сути, лодка имеет четыре независимых системы тушения :

  1. Система воздушно-пенного пожаротушения (ВПЛ);
  2. Система водяного пожаротушения;
  3. Огнетушители и противопожарное имущество (асбестовое полотно, брезент и т. п).

При этом, в отличие от стационарных, наземных систем, водяное тушение не является основным. Наоборот, руководство по борьбе за живучесть (РБЖ ПЛ), нацеливает на использование в первую очередь объёмной и воздушно-пенной систем. Причина этому - большая насыщенность ПЛ оборудованием, а значит, высокая вероятность повреждений от воды, коротких замыканий, выделения вредных газов.

Кроме того, имеются системы предотвращения пожаров:

  • система орошения шахт (контейнеров) ракетного оружия - на ракетных ПЛ;
  • система орошения боеприпаса, хранящегося на стеллажах в отсеках ПЛ;
  • система орошения межотсечных переборок;

Cистема объёмного химического пожаротушения (ЛОХ)

Система Лодочная, Объёмная, Химическая (ЛОХ) предназначена для тушения пожаров в отсеках ПЛ (кроме пожаров порохов, взрывчатых веществ и двухкомпонентного ракетного топлива). Основана на прерывании цепной реакции горения при участии кислорода воздуха гасящим агентом на основе фреона. Основное её достоинство - универсальность. Однако запас фреона ограничен, и потому использование ЛОХ рекомендуется только в определённых случаях.

Система воздушно-пенного пожаротушения (ВПЛ)

Система Воздушно-пенная, Лодочная (ВПЛ) предназначена для тушения небольших местных возгораний в отсеках:

  • электрооборудования, находящегося под напряжением;
  • скопившегося в трюме топлива, масла или других легковоспламеняющихся жидкостей;
  • материалов в аккумуляторной яме;
  • ветоши, деревянной обшивки, теплоизоляционных материалов.

Система водяного пожаротушения

Система предназначена для тушения пожара в надстройке ПЛ и ограждении рубки, а также пожаров топлива, пролитого на воде вблизи ПЛ. Иными словами, не предназначена для тушения внутри прочного корпуса ПЛ.

Огнетушители и пожарное имущество

Предназначены для тушения возгораний ветоши, деревянной обшивки, электроизоляционных и теплоизоляционных материалов и обеспечения действий личного состава при тушении пожара. Иначе говоря, играют вспомогательную роль в случаях, когда использование централизованных систем пожаротушения затруднено или невозможно.

  • Все системы и устройства подводной лодки настолько тесно связаны с живучестью и зависят друг от друга, что всякий, кто допускается на борт хотя бы временно, должен сдать зачёт по устройству и правилам безопасности на ПЛ, включая особенности конкретного корабля, на который получает доступ.
  • Википедия - Российская атомная подводная лодка типа «Акула» («Тайфун») Подводная лодка (подлодка, пл, субмарина) корабль, способный погружаться и длительное время действовать в подводном положении. Важнейшее тактическое свойство подводной лодки скрытность … Википедия

    Российская атомная подводная лодка типа «Акула» («Тайфун») Подводная лодка (подлодка, пл, субмарина) корабль, способный погружаться и длительное время действовать в подводном положении. Важнейшее тактическое свойство подводной лодки скрытность … Википедия

    Для этого термина существует аббревиатура «ПЛА», но под этим сокращением могут пониматься другие значения: см. ПЛА (значения). Для этого термина существует аббревиатура «АПЛ», но под этим сокращением могут пониматься другие значения: см. АПЛ… … Википедия

    Схематический разрез двухкорпусной ПЛ 1 прочный корпус, 2 лёгкий корпус (и ЦГБ), 3 прочная рубка, 4 ограждение рубки, 5 надстройка, 6 … Википедия

    Схематический разрез двухкорпусной ПЛ 1 прочный корпус, 2 лёгкий корпус (и ЦГБ), 3 прочная рубка, 4 ограждение рубки, 5 надстройка, 6 верхний стрингер ЛК, 7 киль Назначение системы погружения и всплытия подводной лодки (ПЛ) полностью… … Википедия

Справочник по морской практике Автор неизвестен

1.3. Устройство подводной лодки

Подводные лодки – особый класс боевых кораблей, которые кроме всех качеств военных кораблей обладают способностью плавать под водой, маневрируя по курсу и глубине. По конструктивному исполнению (рис. 1.20) подводные лодки бывают:

– о д н о к о р п у с н ы е, имеющие один прочный корпус, который заканчивается в носу и корме хорошо обтекаемыми оконечностями легкой конструкции;

– п о л у т о р а к о р п у с н ы е, имеющие кроме прочного корпуса еще и легкий, но не по всему обводу прочного корпуса;

– д в у к о р п у с н ы е, имеющие два корпуса – прочный и легкий, причем последний полностью облегает по периметру прочный и простирается на всю длину лодки. В настоящее время большинство подводных лодок являются двукорпусными.

Рис. 1.20. Конструктивные типы подводных лодок:

а – однокорпусная; б – полуторакорпусная; в – двукорпусная; 1 – прочный корпус; 2 – боевая рубка; 3 – надстройка; 4 – киль; 5 – легкий корпус

Прочный корпус – основной конструктивный элемент подводной лодки, обеспечивающий безопасное нахождение ее на предельной глубине. Он образует замкнутый объем, непроницаемый для воды. Пространство внутри прочного корпуса (рис. 1.21) разделяется поперечными водонепроницаемыми переборками на отсеки, которые называются в зависимости от характера вооружения и оборудования, располагающихся в них.

Рис. 1.21. продольный разрез дизель-аккумуляторной подводной лодки:

1 – прочный корпус; 2 – носовые торпедные аппарты; 3 – легкий корпус; носовой торпедный отсек; 5 – торпеднопогрузочный люк; 6 – надстройка; 7 – прочная боевая рубка; 8 – ограждение рубки; 9 – выдвижные устройства; 10 – входной люк; 11 – кормовые торпедные аппараты; 12 – кормовая оконечность; 13 – перо руля; 14 – кормовая дифферентная цистерна; 15 – концевая (кормовая) водонепроницаемая переборка; 16 – кормовой торпедный отсек; 17 – внутренняя водонепроницаемая переборка; 18 – отсек главных гребных электродвигателей и электростанция; 19 – балластная цистерна; 20 – машинный отсек; 21 – топливная цистерна; 22 , 26 – кормовая и носовая группы аккумуляторных батарей; 23, 27 – жилые помещения команды; 24 – центральный пост; 25 – трюм центрального поста; 28 – носовая дифферентная цистерна; 29 – концевая (носовая) водонепроницаемая переборка; 30 – носовая оконечность; 31 – цистерна плавучести.

Внутри прочного корпуса размещаются помещения для личного состава, главные и вспомогательные механизмы, оружие, различные системы и устройства, носовая и кормовая группы аккумуляторных батарей, различные запасы и т. п. На современных подводных лодках вес прочного корпуса в общем весе корабля составляет 16-25%; в весе только корпусных конструкций – 50-65%.

Конструктивно прочный корпус состоит из шпангоутов и обшивки. Ш п а н г о у т ы имеют, как правило, кольцевую, а в оконечностях эллиптическую форму и изготовляются из профильной стали. Устанавливаются они один от другого на расстоянии 300-700 мм в зависимости от конструкции лодки как с внутренней, .так и с наружной стороны обшивки корпуса, а иногда и комбинированно с той и другой стороны вплотную.

О б ш и в к а прочного корпуса изготовляется из специальной прокатной листовой стали и приваривается к шпангоутам. Толщина листов обшивки доходит до 35 мм в зависимости от диаметра прочного корпуса и предельной глубины погружения подводной лодки.

П е р е б о р к и прочного корпуса бывают прочные и легкие. Прочные переборки делят внутренний объем современных подводных лодок на 6-10 водонепроницаемых отсеков и обеспечивают подводную непотопляемость корабля. По расположению они бывают внутренними и концевыми; по форме – плоскими и сферическими.

Легкие переборки предназначены для обеспечения надводной непотопляемости корабля. Конструктивно переборки выполняются из набора и обшивки. Набор переборки обычно состоит из нескольких вертикальных и поперечных стоек (балок). Обшивка изготовляется из листовой стали.

Концевые водонепроницаемые переборки обычно равнопрочны с прочным корпусом и замыкают его в носовой и кормовой частях. Эти переборки служат на большинстве подводных лодок жесткими опорами для торпедных аппаратов.

Отсеки сообщаются через водонепроницаемые двери, имеющие круглую или прямоугольную форму. Эти двери снабжены быстродействующими запирающими устройствами.

В вертикальном направлении отсеки разделяются платформами на верхнюю и нижнюю части, а иногда помещения лодки имеют многоярусное расположение, что увеличивает полезную площадь платформ, приходящуюся на единицу объема. Расстояние между платформами «в свету» делается более 2 м, т. е. несколько большим, чем средний рост человека.

В верхней части прочного корпуса устанавливается прочная (боевая) рубка, сообщающаяся через рубочный люк с центральным постом, под которым расположен трюм. На большинстве современных подводных лодок прочная рубка выполняется в виде круглого цилиндра небольшой высоты. Снаружи прочная рубка и устройства, расположенные за ней, для улучшения обтекания при движении в подводном положении закрываются легкими конструкциями, которые называются ограждением рубки. Обшивка рубки изготовляется из листовой стали той же марки, что и прочный корпус. Торпедо- погрузочный и входные люки располагаются также вверху прочного корпуса.

Ц и с т е р н ы предназначены для погружения, всплытия, удифферентования лодки, а также для хранения жидких грузов. В зависимости от назначения бывают цистерны: главного балласта, вспомогательного балласта, корабельных запасов и специальные. Конструктивно они выполняются либо прочными, т. е. рассчитанными на предельную глубину погружения, либо легкими, способными выдерживать давление 1-3 кг/см2. Они располагаются внутри прочного корпуса, между прочным и легким корпусом и в оконечностях.

К и л ь – сварная или клепаная балка коробчатого, трапециевидного, Т-образного, а иногда и полуцилиндрического сечения, привариваемая к днищевой части корпуса лодки. Он предназначен для усиления продольной прочности, предохранения корпуса от повреждения при покладке на каменистый грунт и постановке на клетку дока.

Легкий корпус (рис. 1.22) – жесткий каркас, состоящий из шпангоутов, стрингеров, поперечных непроницаемых переборок и обшивки. Он придает подводной лодке хорошо обтекаемую форму. Легкий корпус состоит из наружного корпуса, носовой и кормовой оконечностей, палубной надстройки, ограждения рубки. Форму легкого корпуса полностью определяют наружные обводы корабля.

Рис. 1.22. Поперечный разрез полуторакорпусной подводной лодки:

1 – ходовой мостик; 2 – боевая рубка; 3 – надстройка; 4 – стрингер; 5 – уравнительная цистерна; 6 – подкрепляющая стойка; 7, 9 – кницы; 8- платформа; 10 – коробчатый киль; 11 – фундамент главных дизелей; 12 – обшивка прочного корпуса; 13 – шпангоуты прочного корпуса; 14 – цистерна главного балласта; 15 – раскосные стойки; 16 – крышка цистерны; 17 – обшивка легкого корпуса; 18 – шпангоут легкого корпуса; 19 – верхняя палуба

Наружным корпусом называется водонепроницаемая часть легкого корпуса, расположенная вдоль прочного корпуса. Он закрывает прочный корпус по периметру поперечного сечения лодки от киля до верхнего водонепроницаемого стрингера и простирается по длине корабля от носовой до кормовой концевых переборок прочного корпуса. Ледовый пояс легкого корпуса располагается в районе крейсерской ватерлинии и простирается от носовой оконечности до миделя; ширина пояса около 1 ж, толщина листов – 8 мм.

Оконечности легкого корпуса служат для придания обтекаемости обводам носа и кормы подводной лодки и простираются от концевых переборок прочного корпуса до форштевня и ахтерштевня соответственно.

В носовой оконечности размещаются: носовые торпедные аппараты, цистерны главного балласта и плавучести, цепной ящик, якорное устройство, гидроакустические приемники и излучатели. Конструктивно она состоит из обшивки и сложной системы набора. Выполняется из листовой стали того же качества, что и наружный корпус.

Форштевень – кованая или сварная балка, обеспечивает жесткость носовой кромки корпуса лодки.

В кормовой оконечности (рис. 1.23) размещаются: кормовые торпедные аппараты, цистерны главного балласта, горизонтальные и вертикальные рули, стабилизаторы, гребные валы с мортирами.

Рис. 1.23. Схема кормовых выступающих устройств:

1 – вертикальный стабилизатор; 2 – вертикальный руль; 3 – гребной винт; 4 – горизонтальный руль; 5 – горизонтальный стабилизатор

Ахтерштевень – балка сложного сечения, обычно сварная; обеспечивает жесткость кормовой кромки корпуса подводной лодки.

Горизонтальные и вертикальные стабилизаторы придают при движении устойчивость подводной лодке. Через горизонтальные стабилизаторы (при двухвальной энергетической установке) проходят гребные валы, на концах которых устанавливаются гребные винты. За гребными винтами в одной плоскости со стабилизаторами устанавливаются кормовые горизонтальные рули.

Конструктивно кормовая оконечность состоит из набора и обшивки. Набор выполняется из стрингеров, рамных и простых шпангоутов, платформ и переборок. Обшивка равнопрочна с наружным корпусом.

Надстройка (рис. 1.24) располагается выше верхнего водонепроницаемого стрингера наружного корпуса и простирается по всей длине прочного корпуса, переходя за его пределами в оконечности. Конструктивно надстройка состоит из обшивки и набора. В надстройке располагаются: различные системы, устройства, носовые горизонтальные рули и др.

Рис. 1.24. Надстройка подводной лодки:

1 – кницы; 2 – отверстия в палубе; 3 – палуба надстройки; 4 – борт надстройки; 5 – шпигаты; 6- пиллерс; 7 – крышка цистерны; 8 – обшивка прочного корпуса; 9 – шпангоут прочного корпуса; 10 – обшивка легкого корпуса; 11 – водонепроницаемый стрингер наружного корпуса; 12 – шпангоут легкого корпуса; 13 – шпангоут надстройки

Выдвижные устройства (рис. 1.25). Современная подводная лодка имеет большое число различных устройств и систем, которые обеспечивают управление ее маневрами, использование оружия, живучесть, нормальную работу энергетической установки и других технических средств в различных условиях плавания.

Рис. 1.25. Выдвижные устройства и системы подводной лодки:

1 – перископ; 2 – радиоантенны (выдвижные); 3 – радиолокационные антенны; 4 – воздушная шахта для работы дизеля под водой (РДП); 5 – выхлопное устройство РДП; 6 – радиоантенна (заваливающаяся)

К таким устройствам и системам, в частности, относятся: радиоантенны (заваливающиеся и выдвижные), выхлопное устройство для работы дизеля под водой (РДП), воздушная шахта РДП, радиолокационные антенны, перископы и др.

Принципы действия и устройство подводной лодки рассматриваются вместе, так как они тесно связаны. Определяющим является принцип подводного плавания. Отсюда, основные требования к ПЛ это:

  • выдерживать давление воды в подводном положении, то есть обеспечивать прочность и водонепроницаемость корпуса.
  • обеспечивать управляемые погружение, всплытие, и смену глубины.
  • иметь оптимальное с точки зрения ходкости обтекание
  • сохранять работоспособность (боеспособность) во всём диапазоне эксплуатации по физическим, климатическим условиям и условиям автономности.

Прочность и водонепроницаемость

Обеспечение прочности является самой трудной задачей, и потому главное внимание уделяется ей. В случае двухкорпусной конструкции давление воды (избыточные 1 кгс/см² на каждые 10 м глубины) принимает на себя прочный корпус , имеющий оптимальную форму для противостояния давлению. Обтекание обеспечивается лёгким корпусом . В ряде случаев при однокорпусной конструкции прочный корпус имеет форму одновременно удовлетворяющую и условиям противостояния давлению, и условиям обтекаемости. Например, такую форму имел корпус подводной лодки Джевецкого , или британской сверхмалой субмарины X-Craft .

Прочный корпус (ПК)

От того, насколько прочен корпус, какое давление воды он может выдерживать, зависит важнейшая тактическая характеристика ПЛ - глубина погружения. Глубина определяет скрытность и неуязвимость лодки, чем больше глубина погружения, тем сложнее обнаружить лодку и тем сложнее поразить её. Наиболее важны рабочая глубина - максимальная глубина, на которой лодка может находиться неограниченно долго без возникновения остаточных деформаций, и предельная глубина - максимальная глубина, на которую лодка ещё может погружаться без разрушения, пусть и с остаточными деформациями.

Разумеется, прочность должна сопровождаться водонепроницаемостью. Иначе лодка, как и всякий корабль, просто не сможет плавать.

Перед выходом в море или перед походом, в ходе пробного погружения, на ПЛ проверяется прочность и герметичность прочного корпуса. Непосредственно перед погружением из лодки с помощью компрессора (на дизельных ПЛ - главного дизеля) частью откачивается воздух, чтобы создать разрежение. Подается команда «слушать в отсеках». Одновременно следят за отсечным давлением. Если слышен характерный свист воздуха, и/или давление быстро восстанавливается до атмосферного, прочный корпус негерметичен. После погружения в позиционное положение подается команда «осмотреться в отсеках», и корпус и арматура визуально проверяются на течи.

Лёгкий корпус (ЛК)

Обводы лёгкого корпуса обеспечивают оптимальное обтекание на расчётном ходу. В подводном положении внутри лёгкого корпуса находится вода, - внутри и снаружи него давление одинаково и ему нет надобности быть прочным, отсюда его название. В легком корпусе располагают оборудование, не требующее изоляции от забортного давления: балластные и топливные (на дизельных ПЛ) цистерны, антенны ГАС , тяги рулевого устройства.

Типы конструкции корпуса

  • Однокорпусные : цистерны главного балласта (ЦГБ) находятся внутри прочного корпуса. Лёгкий корпус только в оконечностях. Элементы набора, подобно надводному кораблю, находятся внутри прочного корпуса. Достоинства такой конструкции: экономия размеров и веса, соответственно меньшие потребные мощности главных механизмов, лучшая подводная маневренность. Недостатки: уязвимость прочного корпуса, малый запас плавучести, необходимость выполнять ЦГБ прочными. Исторически, первые ПЛ были однокорпусными. Большинство американских АПЛ также однокорпусные.
  • Двухкорпусные (ЦГБ внутри лёгкого корпуса, лёгкий корпус полностью закрывает прочный): у двухкорпусных ПЛ элементы набора обычно находятся снаружи прочного корпуса, чтобы сэкономить место внутри. Достоинства: повышенный запас плавучести, более живучая конструкция. Недостатки: увеличение размеров и веса, усложнение балластных систем, меньшая маневренность, в том числе при погружении и всплытии. По такой схеме построено большинство русских/советских лодок. Для них стандартное требование - обеспечение непотопляемости при затоплении любого отсека и прилегающих к нему ЦГБ.
  • Полуторакорпусные : (ЦГБ внутри лёгкого корпуса, лёгкий корпус частично закрывает прочный). Достоинства полуторакорпусных ПЛ: хорошая маневренность, сокращенное время погружения при достаточно высокой живучести. Недостатки: меньший запас плавучести, необходимость помещать больше систем в прочный корпус. Такой конструкцией отличались средние ПЛ времен Второй мировой войны , например, немецкие типа VII , и первые послевоенные, например, тип «Гуппи», США.

Надстройка

Надстройка формирует дополнительный объём над ЦГБ и/или верхнюю палубу ПЛ, для использования в надводном положении. Выполняется лёгкой, в подводном положении заполняется водой. Может играть роль дополнительной камеры над ЦГБ, страхующей цистерны от аварийного заполнения. В ней же располагают устройства, не требующие водонепроницаемости: швартовное, якорное, аварийные буи. В верхней части цистерн находятся клапаны вентиляции (КВ), под ними - аварийные захлопки (АЗ). Иначе их называют первыми и вторыми запорами ЦГБ.

Прочная рубка

Устанавливается на прочном корпусе сверху. Выполняется водонепроницаемой. Является шлюзом для доступа в ПЛ через главный люк, спасательной камерой, а часто и боевым постом. Имеет верхний и нижний рубочный люк . Через неё же обычно пропущены шахты перископов . Прочная рубка обеспечивает дополнительную непотопляемость в надводном положении - верхний рубочный люк высоко над ватерлинией , опасность заливания ПЛ волной меньше, повреждение прочной рубки не нарушает герметичности прочного корпуса. При действии под перископом рубка позволяет увеличить его вылет - высоту головки над корпусом, - и тем самым увеличить перископную глубину. Тактически это выгоднее - срочное погружение из-под перископа происходит быстрее.

Ограждение рубки

Когда требуется срочное погружение, используют цистерну быстрого погружения (ЦБП, иногда называется цистерной срочного погружения). Её объём не входит в расчётный запас плавучести, то есть приняв в неё балласт, лодка становится тяжелее окружающей воды, что помогает «провалиться» на глубину. После этого, разумеется, цистерна быстрого погружения немедленно продувается. Она находится в прочном корпусе и выполняется прочной.

В боевой обстановке (в том числе на боевой службе и в походе) немедленно после всплытия лодка принимает воду в ЦБП, и компенсирует её вес, поддувая главный балласт - сохраняя некоторое избыточное давление в ЦГБ. Таким образом, лодка находится в немедленной готовности к срочному погружению.

Среди важнейших специальных цистерн - следующие.

Торпедо- и ракетозаместительные цистерны

Чтобы сохранить общую нагрузку после выхода торпед или ракет из ТА / шахт, и предотвратить самопроизвольное всплытие, поступившую в них воду (около тонны на каждую торпеду, десятки тонн на ракету) не откачивают за борт, а сливают в специально предназначенные цистерны. Это позволяет не нарушать работы с ЦГБ и ограничить объём уравнительной цистерны.

Если попытаться компенсировать вес торпед и ракет за счёт главного балласта, тот должен быть переменным, то есть в ЦГБ должен оставаться пузырь воздуха, а он «гуляет» (подвижен) - наихудшая для дифферентовки ситуация. Погруженная ПЛ при этом практически теряет управляемость , по выражению одного автора, «ведет себя как взбесившаяся лошадь». В меньшей степени это справедливо и для уравнительной цистерны. Но главное, если ею компенсировать большие грузы, придется увеличить её объём, а значит, количество сжатого воздуха, необходимого для продувания. А запас сжатого воздуха на лодке - самое ценное, его всегда мало и он трудно восполним.

Цистерны кольцевого зазора

Между торпедой (ракетой) и стенкой торпедного аппарата (шахты) всегда имеется зазор, особенно в головной и хвостовой частях. Перед выстрелом наружную крышку торпедного аппарата (шахты) нужно открыть. Сделать это можно, только сравняв давление за бортом и внутри, то есть заполнив ТА (шахту) водой, сообщающейся с забортной. Но если впустить воду непосредственно из-за борта, дифферентовка будет сбита - прямо перед выстрелом.

Чтобы этого избежать, воду, необходимую для заполнения зазора, хранят в специальных цистернах кольцевого зазора (ЦКЗ). Они находятся вблизи ТА или шахт, и заполняются из уравнительной цистерны. После этого для выравнивания давления достаточно перепустить воду из ЦКЗ в ТА и открыть забортный клапан.

Энергетика и живучесть

Заполнение и продувка цистерн, выстрел торпед или ракет, движение и вентиляция требуют затрат энергии.

Соответственно, без энергии лодка не может не только двигаться, но сколько-нибудь долго сохранять способность «плавать и стрелять». То есть, энергетика и живучесть - две стороны одного процесса.

Если с движением можно подобрать традиционные для корабля решения - использовать энергию сжигаемого топлива (если для этого достаточно кислорода), или энергию расщепления атома, то для действий, свойственных только подводной лодке, нужны другие источники энергии. Даже ядерный реактор, дающий практически неограниченный её источник, имеет недостаток - он вырабатывает её только в определённом темпе, и очень неохотно темп меняет. Попытаться получить с него больше мощности значит рисковать, что реакция выйдет из-под контроля - этакий ядерный мини-взрыв.

Значит, нужен какой-то способ запасать энергию, и быстро высвобождать по мере надобности. И сжатый воздух с зарождения подводного плавания остаётся самым лучшим способом. Единственный серьёзный недостаток его в ограниченности запасов. Баллоны для хранения воздуха имеют немалый вес, и тем больше, чем больше давление в них. Это и ставит предел запасам.

Воздушная система

Сжатый воздух является вторым по значению источником энергии на лодке и, во вторую очередь, даёт запас кислорода. С его помощью производится множество эволюций - от погружения и всплытия до удаления из лодки отходов.

Например, бороться с аварийным затоплением отсеков можно подачей в них сжатого воздуха. Торпеды и ракеты выстреливаются тоже воздухом - по сути, продуванием ТА или шахт.

Воздушная система подразделяется на систему воздуха высокого давления (ВВД) давлением 200-400 кг/см 2 (в зависимости от типа ПЛ), воздуха среднего давления (ВСД) давлением 6-30 кг/см 2 и воздуха низкого давления (ВНД).

Система ВВД является среди них главной. Хранить сжатый воздух выгоднее под высоким давлением - занимает меньше места и аккумулирует больше энергии. Поэтому его хранят в баллонах ВВД, а в другие подсистемы отпускают через редукторы давления.

Пополнение запасов ВВД - долгая и энергоёмкая операция. И конечно, она требует доступа к атмосферному воздуху. Учитывая, что современные лодки большую часть времени проводят под водой, и на перископной глубине стараются тоже не задерживаться, возможностей для пополнения не так много. Сжатый воздух приходится буквально рационировать, и обычно следит за этим лично старший механик (командир БЧ-5). Избытки углекислого газа, выделяемого при дыхании, удаляются из воздуха в установках химической регенерации воздуха (скрубберах), включенных в систему вентиляции и рециркуляции воздуха.

На атомных подводных лодках используются установки автономной генерации кислорода для дыхания, с помощью электролиза забортной морской воды . Эта система позволяет атомным подводным лодкам длительное время (неделями) не всплывать на поверхность для пополнения запаса воздуха.

На некоторых современных неатомных подводных лодках Швеции и Японии применяется воздухонезависимый двигатель Стирлинга , работающий на жидком кислороде, который в дальнейшем используется для дыхания. Подводные лодки, оснащенные данной системой, могут до 20 дней непрерывно находиться под водой.

Движение

Движение, или ход ПЛ - главный потребитель энергии. В зависимости от того, как обеспечивается надводный и подводный ход, все ПЛ можно разделить на два больших типа: с раздельным или с единым двигателем .

Раздельным называется двигатель, который используется только для надводного или только для подводного хода. Единым , соответственно, называется двигатель, который годится для обоих режимов.

Исторически первым двигателем ПЛ был человек. Своей мускульной силой он приводил лодку в движение как на поверхности, так и под водой, то есть был единым двигателем.

Поиск более мощных и дальноходных двигателей был прямо связан с развитием техники вообще. Он прошёл через паровую машину и различные типы двигателей внутреннего сгорания к дизелю . Но все они имеют общий недостаток - зависимость от атмосферного воздуха. Неизбежно возникает раздельность , то есть нужда во втором двигателе, для подводного хода. Дополнительное требование к двигателям подводных лодок - низкий уровень производимого шума. Бесшумность подлодки в режиме подкрадывания необходима для сохранения её незаметности от противника при выполнении боевых задач в непосредственной близости от него.

Традиционно двигателем подводного хода был и остаётся электромотор , питающийся от аккумуляторной батареи. Он воздухонезависим, достаточно безопасен и приемлем по весу и габаритам. Однако и тут есть серьёзный недостаток - малая ёмкость батареи. Поэтому запас непрерывного подводного хода ограничен. Мало того, он зависит от режима использования. Типичной дизель-электрической ПЛ требуется подзаряжать батарею после каждые 300-350 миль экономического хода или каждые 20-30 миль полного хода. Иными словами, лодка может пройти без подзарядки 3 и более суток со скоростью в 2-4 узла либо час-полтора со скоростью более 20 узлов. Поскольку вес и объём дизельной ПЛ ограничены, дизель и электромотор выступают в нескольких ролях. Дизель может быть двигателем или поршневым компрессором , если его вращает электромотор. Тот, в свою очередь, может быть электрическим генератором , когда его вращает дизель, или двигателем, когда работает на винт.

Основной проблемой хранения и передачи электроэнергии является сопротивление элементов ЭЭС. В отличие от наземных агрегатов, сопротивление в условиях высокой влажности и насыщенности оборудованием ПЛ - величина сильно переменная. Одной из постоянных задач команды электриков является контроль изоляции и восстановление её сопротивления до штатного.

Второй серьёзной проблемой является состояние аккумуляторных батарей. В результате химической реакции в них генерируется тепло и выделяется водород . Если свободный водород накопится в определённой концентрации (около 4 %), он образует с кислородом воздуха гремучую смесь , способную взрываться не хуже глубинной бомбы. Перегретая же батарея в тесном трюме служит причиной весьма характерного для лодок ЧП - пожара в аккумуляторной яме.

При попадании в батарею морской воды выделяется хлор , образующий крайне ядовитые и взрывоопасные соединения. Смесь водорода с хлором взрывается даже от света. Учитывая, что вероятность попадания забортной воды в помещения лодки всегда высока, требуется постоянный контроль за содержанием хлора и вентилирование аккумуляторных ям.

В подводном положении для связывания водорода используются приборы беспламенного (каталитического) дожигания водорода - КПЧ, устанавливаемые в отсеках подводной лодки и печи дожига водорода, встроенные в систему вентиляции аккумуляторной батареи. Полное удаление водорода возможно только вентилированием АБ. Поэтому на ходовой лодке даже в базе несётся вахта в центральном посту и в посту энергетики и живучести (ПЭЖ). Одна из её задач - контроль содержания водорода и вентилирование аккумуляторной батареи.

Топливная система

На дизель-электрических, и в меньшей степени, на атомных ПЛ используется дизельное топливо - соляр. Объём хранимого топлива может составлять до 30 % водоизмещения. Причём это переменный запас, а значит он представляет серьёзную задачу при расчёте дифферентовки.

Соляр достаточно легко отделяется от морской воды отстаиванием, при этом практически не смешивается, поэтому применяют такую схему. Топливные цистерны располагаются в нижней части лёгкого корпуса. По мере расходования топлива оно замещается забортной водой. Поскольку разница плотностей соляра и воды примерно 0,8 к 1,0, соблюдается порядок расходования, например: носовая цистерна левого борта, затем кормовая правого, затем носовая цистерна правого, и так далее, чтобы изменения в дифферентовке были минимальны.

На некоторых неатомных подводных лодках 5-го поколения в качестве привода установлен воздухонезависимый двигатель Стирлинга , работающий на жидком кислороде, который в дальнейшем используется для дыхания. Система позволяет достичь высокой скрытности, лодка до 20 суток может не подниматься на поверхность.

Водоотливная система

Как следует из названия, предназначена для удаления воды из ПЛ. Состоит из насосов (помп), трубопроводов и арматуры. Имеет водоотливные помпы для быстрой откачки больших количеств воды, и осушительные для полного её удаления.

Основу её составляют центробежные помпы, с большой производительностью. Поскольку их подача зависит от противодавления, и значит, падает с глубиной, то имеются и помпы, подача которых от противодавления не зависит - поршневые. Например, на ПЛ проекта 633 производительность водоотливных средств на поверхности составляет 250 м³/ч, на рабочей глубине 60 м³/ч.

Противопожарная система

Противопожарная система ПЛ состоит из подсистем четырёх видов. По сути лодка имеет четыре независимых системы тушения:

  1. Система объёмного химического пожаротушения (СХП);
  2. Система воздушно-пенного пожаротушения (ВПЛ);
  3. Система водяного пожаротушения;
  4. Огнетушители и противопожарное имущество (асбестовое полотно, брезент и т. п).

При этом, в отличие от стационарных, наземных систем, водяное тушение не является основным. Наоборот, руководство по борьбе за живучесть (РБЖ ПЛ), нацеливает на использование в первую очередь объёмной и воздушно-пенной систем. Причина этому - большая насыщенность ПЛ оборудованием, а значит, высокая вероятность повреждений от воды, коротких замыканий, выделения вредных газов.

Кроме того, имеются системы предотвращения пожаров:

  • система орошения шахт (контейнеров) ракетного оружия - на ракетных ПЛ;
  • система орошения боеприпаса, хранящегося на стеллажах в отсеках ПЛ;
  • система орошения межотсечных переборок;

Система объёмного химического пожаротушения (ЛОХ)

Лодочная объёмная химическая (ЛОХ) система предназначена для тушения пожаров в отсеках ПЛ (кроме пожаров порохов, взрывчатых веществ и двухкомпонентного ракетного топлива). Основана на прерывании цепной реакции горения при участии кислорода воздуха гасящим агентом на основе фреона. Основное её достоинство - универсальность. Однако запас фреона ограничен, и потому использование ЛОХ рекомендуется только в определённых случаях.

Система воздушно-пенного пожаротушения (ВПЛ)

Воздушно-пенная лодочная (ВПЛ) система предназначена для тушения небольших местных возгораний в отсеках:

  • электрооборудования, находящегося под напряжением;
  • скопившегося в трюме топлива, масла или других легковоспламеняющихся жидкостей;
  • материалов в аккумуляторной яме;
  • ветоши, деревянной обшивки, теплоизоляционных материалов.

Система водяного пожаротушения

Система предназначена для тушения пожара в надстройке ПЛ и ограждении рубки, а также пожаров топлива, пролитого на воде вблизи ПЛ. Иными словами, не предназначена для тушения внутри прочного корпуса ПЛ.

Огнетушители и пожарное имущество

Предназначены для тушения возгораний ветоши, деревянной обшивки, электроизоляционных и теплоизоляционных материалов и обеспечения действий личного состава при тушении пожара. Иначе говоря, играют вспомогательную роль в случаях, когда использование централизованных систем пожаротушения затруднено или невозможно.

У меня на «Малютке» служил старшина торпедистов, весом более 120 кг. Однажды, когда воды в дифферентных цистернах не хватило, я производил дифферентовку, командуя: «Товарищ мичман, пройдите, пожалуйста, в первый отсек и сидите там».

  • Корабельный устав ВМФ. Глава 1. Основы организация корабля. ст. 22, 28-32. Боевые расписания, боевые инструкции
  • Инфантьев В. Н. По местам стоять, к погружению! Научно-художественная книга. - Л., 1977.
  • Именно так обстояло дело на самых первых подводных лодках, что для многих из них оказалось фатальным - при малейшей неравномерности заполнения ЦГБ при погружении ПЛ теряли продольную остойчивость и проваливались на глубину носом или кормой вперёд; то же самое происходило и на ходу в подводном положении из-за свободного перетекания воды в частично заполненных ЦГБ, что вынуждало постоянно действовать горизонтальным и рулями, в результате чего лодка двигалась по своеобразной «синусоиде». Только на рубеже XIX и XX веков американским конструктором ирландского происхождения Холландом были применены расположенные по бокам от прочного корпуса U-образные ЦГБ, при погружении в позиционное положение заполняющиеся водой до верха, без остаточного «пузыря» воздуха, что лишало воду в них способности свободно переливаться и тем самым нарушать дифферентовку. Это в решающей степени позволило решить проблемы с продольной центровкой ПЛ и способностью держать заданную глубину, тем самым перейти от отдельных опытов к строительству настоящих боевых подводных кораблей.

    Литература